首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Host specificity and host selection by insect parasitoids are hypothesized to be correlated with suitability of the hosts for parasitoid development. The present study investigates the correlation between host suitability and earlier studied host-finding behaviour of two closely related braconid larval parasitoid species, the generalist Cotesia glomerata (L.) and the specialist C. rubecula (Marshall) (Hymenoptera: Braconidae). We compared the capability of both parasitoid species to parasitize and develop in three Pieris host species, i.e. P. brassicae (L.), P. rapae (L.) and P. napi (L.) (Lepidoptera: Pieridae). In laboratory experiments, we measured the effect of host species on fitness parameters such as survival, development, sex ratio and size of parasitoid progeny. The results show that C. glomerata is capable of developing in the three host species, with significant differences in parasitoid survival, clutch size and adult weight among Pieris species. The host range for development was more restricted for C. rubecula. Although C. rubecula is physiologically able to develop in P. brassicae larvae, parasitoid fitness is negatively affected by this host species, compared to its most regular host, P. rapae. A comparison of the present data on host suitability with earlier studies on host-searching behaviour suggests that the host-foraging behaviour of both parasitoid species not only leads to selection of the most suitable host species for parasitoid development, but also plays a significant role in shaping parasitoid host range.  相似文献   

2.
In solitary parasitoids, the mandibulate first instars behave aggressively towards potential competitors so that generally only one larva survives per host. A ‘failure of competition’ may result in facultative gregarious development, however. We used Ephedrus californicus Baker (Hymenoptera: Braconidae: Aphidiinae), a solitary koinobiont parasitoid of aphids, to test two hypotheses in the laboratory that could explain facultative gregarious development. Gregarious development increased with the intensity of parasitism, with two (rarely three) parasitoids successfully developing in a single aphid. In heavily superparasitized hosts, interference between surviving larvae often caused abnormal pupation behaviour and inability to emerge from the mummy. The hypothesis that the survival of more than one larva per host is dependent on differences in larval age was not supported. The total body size in terms of dry mass of two males or two females developing together in the same host was higher than that of same‐sex counterparts developing singly. Females were larger than males with which they shared a host. Hypotheses about the evolutionary transition from a solitary to a gregarious lifestyle in parasitoid Hymenoptera have focused on lethal fighting between first instars but have ignored other constraints including immature mortality during later development and limiting host resources. Especially in species that pupate inside the dead host, specific requirements for pupation and emergence may determine whether one or several offspring per host can develop to adult.  相似文献   

3.
Although a growing number of studies have documented the evolution of adult dispersal‐related traits at the range edge of poleward‐expanding species, we know little about evolutionary changes in immune function or traits expressed by nondispersing larvae. We investigated differentiation in larval (growth and development) and adult traits (immune function and flight‐related traits) between replicated core and edge populations of the poleward‐moving damselfly Coenagrion scitulum. These traits were measured on individuals reared in a common garden experiment at two different food levels, as allocation trade‐offs may be easier to detect under energy shortage. Edge individuals had a faster larval life history (growth and development rates), a higher adult immune function and a nearly significant higher relative flight muscle mass. Most of the differentiation between core and edge populations remained and edge populations had a higher relative flight muscle mass when corrected for latitude‐specific thermal regimes, and hence could likely be attributed to the range expansion process per se. We here for the first time document a higher immune function in individuals at the expansion front of a poleward‐expanding species and documented the rarely investigated evolution of faster life histories during range expansion. The rapid multivariate evolution in these ecological relevant traits between edge and core populations is expected to translate into changed ecological interactions and therefore has the potential to generate novel eco‐evolutionary dynamics at the expansion front.  相似文献   

4.
5.
Summary In many species of insect parasitoids, adult females mature eggs as they search their environment for hosts. In such species, the number of mature eggs, at the point of finding a host, is a function of the interhost time and the rate of egg maturation. Assuming that interhost search times are variable, we use a version of the marginal value theorem to derive a decision rule for optimizing the time spent exploiting individual hosts; this indirectly determines clutch size. We find that a threshold search time exists above which a female should simply lay her currently mature eggs and depart from the host. However, when the search time has been less than the threshold, a female should oviposit, but then remain on the host to mature and lay additional eggs, until the threshold time is reached.  相似文献   

6.
Abstract. Parasitoid host range may proceed from traits affecting host suitability, traits affecting parasitoid foraging behaviour, or both. We tested the hypothesis that encapsulation can be used as a reliable indicator of parasitoid host range in two closely related larval endoparasitoids of Lepidoptera. Cotesia glomerata (L.) (Hymenoptera: Braconidae) is gregarious and a generalist on several species of Pieridae, whereas C. rubecula (Marshall) is solitary and specific to Pieris rapae (L.). We determined the effects of host species ( Pieris brassicae (L.), P. napi (L.) and P. rapae ) (Lepidoptera: Pieridae) and host developmental stage (early first, second and third instar) on encapsulation of parasitoid eggs. Host species and parasitoid species, as well as the resulting interaction between these two factors had significant effects on encapsulation of Cotesia eggs. Encapsulation in Pieris hosts was much lower for C. glomerata (<34%, except for second and third instar of P. rapae ) than for C. rubecula (>32%), even when the latter was parasitizing P. rapae. Encapsulation increased with the age of the larvae, although the only significant difference was for C. glomerata. Overall, P. rapae showed a stronger encapsulation reaction than P. brassicae and P. napi. Encapsulation levels of C. glomerata corresponded well to patterns of female host species and host age preference for oviposition and parasitoid larval performance. In contrast, percentages of encapsulation of C. rubecula were not consistent with host preference and host suitability. We argue that encapsulation alone is unlikely to provide a sufficient explanation for C. glomerata and C. rubecula host range.  相似文献   

7.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

8.
Organisms can either evade winter's unfavourable conditions by migrating or diapausing, or endure them and maintain their activities. When it comes to foraging during winter, a period of scarce resources, there is strong selective pressure on resource exploitation strategy. Generalist parasitoids are particularly affected by this environmental constraint, as their fitness is deeply linked to the profitability of the available hosts. In this study, we considered a cereal aphid–parasitoid system and investigated (1) the host–parasitoid community structure, host availability, and parasitism rate in winter, (2) the influence of host quality in terms of species and instars on the fitness of the aphid parasitoid Aphidius rhopalosiphi De Stefani‐Perez (Hymenoptera: Braconidae: Aphidiinae), and (3) whether there is a detectable impact of host fidelity on parasitism success of this parasitoid species. Host density was low during winter and the aphid community consisted of the species Rhopalosiphum padi L. and Sitobion avenae Fabricius (both Hemiptera: Aphididae), both parasitized by A. rhopalosiphi at non‐negligible rates. Aphidius rhopalosiphi produced more offspring when parasitizing R. padi compared with S. avenae, whereas bigger offspring were produced when parasitizing S. avenae. Although aphid adults and old larvae were significantly larger hosts than young larvae, the latter resulted in higher emergence rates and larger parasitoids. No impact of host fidelity on emergence rates or offspring size was detected. This study provides some evidence that winter A. rhopalosiphi populations are able to take advantage of an array of host types that vary in profitability, indicating that host selectivity may drop under winter's unfavourable conditions.  相似文献   

9.
1. We tested whether two neighbouring Daphnia galeata populations (from Lake Blankaart and Fish Pond), separated only by 5 m of land and with the occasional exchange of water were genetically differentiated in allozyme markers and life history traits. Allozyme electrophoresis revealed that the populations differed in allelic as well as in genotypic composition. 2. In a laboratory transplant experiment, in which animals of four clones of each of the populations were raised in the water of both ponds, survival in Blankaart water was high for both the Blankaart and Fish Pond clones, whereas survival in Fish Pond water was high for the Fish Pond clones, but low for the Blankaart clones. 3. Fish Pond clones produced fewer neonates than Blankaart clones when cultured in Blankaart water. High egg mortality was observed for animals that were raised in Blankaart water, and this egg mortality was higher for Fish Pond clones than for Blankaart clones. 4. Our results provide evidence for genetic differentiation between Daphnia populations inhabiting neighbouring water bodies and suggest local adaptation to environmental conditions other than direct predation.  相似文献   

10.
Aim  We tested various species-level traits for their potential to explain species' range sizes and dispersal abilities.
Location  Southeast Asia and Malay Archipelago.
Methods  We used published maps of geographical distribution estimates for sphingid moths to calculate range areas and classify species according to their dispersion across (present or historical) water straits in the Malay Archipelago. We tested forewing length (FWL), wing load (thorax width/FWL), presence or absence of a functional proboscis (i.e. adult feeding), larval diet breadth and larval diet composition for univariate correlations with range size and inter-island dispersion. We used multivariate, phylogenetically controlled models to test for independent effects of parameters.
Results  Range size correlated strongly with larval diet breadth, a result that was also confirmed in the multivariate model. Adult feeding had a significant impact on range sizes only within the multivariate model, but not in the univariate correlation. Dispersal class also correlated with larval diet breadth, but was additionally influenced by forewing length, wing load and larval diet composition. A univariate effect of adult feeding became non-significant in the multivariate, phylogenetically controlled model.
Main conclusions  Larval diet breadth is the best predictor of range size as well as inter-island dispersion, confirming the importance of niche breadth on the geographic ranges of species. A number of other factors are shown to have additional impact on predictions of range size or inter-island dispersal ability. Our analyses cannot determine the causal mechanisms of these correlations, but may stimulate further research on the adaptive significance of traits affecting range size and dispersal in this system.  相似文献   

11.
Influenza usually spreads through the human population in multiple-wave outbreaks. Successive reinfection of individuals over a short time interval has been explicitly reported during past pandemics. However, the causes of rapid reinfection and the role of reinfection in driving multiple-wave outbreaks remain poorly understood. To investigate these issues, we focus on a two-wave influenza A/H3N2 epidemic that occurred on the remote island of Tristan da Cunha in 1971. Over 59 days, 273 (96%) of 284 islanders experienced at least one attack and 92 (32%) experienced two attacks. We formulate six mathematical models invoking a variety of antigenic and immunological reinfection mechanisms. Using a maximum-likelihood analysis to confront model predictions with the reported incidence time series, we demonstrate that only two mechanisms can be retained: some hosts with either a delayed or deficient humoral immune response to the primary influenza infection were reinfected by the same strain, thus initiating the second epidemic wave. Both mechanisms are supported by previous empirical studies and may arise from a combination of genetic and ecological causes. We advocate that a better understanding and account of heterogeneity in the human immune response are essential to analysis of multiple-wave influenza outbreaks and pandemic planning.  相似文献   

12.
Phytophagous insects have several defence strategies to defend themselves against attack by parasitic wasps. Larval lepidopteran hosts can defend themselves actively to prevent oviposition by the parasitoid. Among the aggressive kinds of behaviour exhibited by hosts against parasitoids are violent wriggling, biting and spitting. The behaviour of the braconid parasitoid Cotesia sesamiae attacking stemboring larvae inside their feeding tunnel in the plant stem was investigated in maize and sugarcane stem pieces and transparent artificial tunnels. Attacking a defending stemborer host inside the confined space of a tunnel was shown to be risky for the female parasitoid. A considerable proportion (25%) of female wasps were killed in their attempt to attack the spitting and biting host. No difference was found in the behaviour of C. sesamiae attacking the suitable host Sesamia calamistis or the unsuitable host Eldana saccharina. The consequences of this high mortality risk involved in each host attack is discussed in relation to the ecology of the parasitoid.  相似文献   

13.
The yearly timing of the life cycle of a parasitoid is a key element of its life‐history strategy. I examine here factors influencing the expression of partial bivoltinism in Tetrastichus julis Walker (Hymenoptera: Eulophidae), a specialist parasitoid introduced to North America to attack its univoltine host, the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae). The varying tendency was assessed of individuals of this gregarious larval parasitoid to either emerge as adults in the same summer they mature, or to enter diapause to emerge the following year. Parasitized hosts were obtained by rearing cereal leaf beetles collected as mature larvae from grain fields in northern Utah (western USA) throughout the growing seasons in 2013 and 2014. Cocoons spun by these beetles were held to determine patterns over the spring and summer in the tendency of the parasitoid to forgo larval diapause. A high percentage (nearly 90% in 2013) of parasitoid individuals were found to forgo diapause and emerge in the same summer from earliest maturing hosts. This percentage rapidly declined to 20% or less of individuals forgoing diapause and emerging from cocoons as the summer advanced. The percentage of parasitoid individuals forgoing diapause increased significantly at a given time of season (early or late) as the number of conspecifics with which an individual shared a host larva increased. These results may reflect a trade‐off for individual parasitoids in which greater success in finding – and ovipositing in – host larvae the following spring vs. in summer, is countered by reduced survivorship in diapausing over the winter vs. emerging in the same summer in which the parasitoid matures. Expression of partial bivoltinism of T. julis, as affected strongly by both season and within‐host density, results in high rates of parasitism of cereal leaf beetles both early and late in the season.  相似文献   

14.
Parasites are known to profoundly affect resource allocation in their host. In order to investigate the effects of Cryphonectria Hypovirus 1 (CHV1) on the life‐history traits of its fungal host Cryphonectria parasitica, an infection matrix was completed with the cross‐infection of six fungal isolates by six different viruses. Mycelial growth, asexual sporulation, and spore size were measured in the 36 combinations, for which horizontal and vertical transmission of the viruses was also assessed. As expected by life‐history theory, a significant negative correlation was found between host somatic growth and asexual reproduction in virus‐free isolates. Interestingly this trade‐off was found to be positive in infected isolates, illustrating the profound changes in host resource allocation induced by CHV1 infection. A significant and positive relationship was also found in infected isolates between vertical transmission and somatic growth. This last relationship suggests that in this system, high levels of virulence could be detrimental to the vertical transmission of the parasite. Those results underscore the interest of studying host–parasite interaction within the life‐history theory framework, which might permit a more accurate understanding of the nature of the modifications triggered by parasite infection on host biology.  相似文献   

15.
Environments causing variation in age‐specific mortality – ecological agents of selection – mediate the evolution of reproductive life‐history traits. However, the relative magnitude of life‐history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade‐off between these traits using a meta‐analysis in livebearing fishes (Poeciliidae). Life‐history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring‐number and offspring‐size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life‐history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents.  相似文献   

16.
Separating genetic and environmental causes of the latitudinal differences among populations is crucial when evaluating the potential for microevolutionary responses to the changing environment. We studied among‐population and environmental components of variation in several life‐history traits of a lichen‐feeding moth Eilema depressum when offspring of replicate Swiss and Finnish females were reared in a common‐garden factorial experiment. A partial second generation was produced only among Swiss larvae, more likely so at higher temperature regime and higher host quality, and more frequently among the offspring of particular females. Growth rates of larvae that chose the diapause development were higher in northern individuals. Our results thus reveal adaptive differences between latitudinal populations in studied life‐history traits, allowing to expect rapid adaptation of the species to further environmental changes. In contrast, invariable responses of the growth rates of the larvae to temperature and host quality support the idea that some basic parameters of insect growth show a high degree of evolutionary conservatism.  相似文献   

17.
At the eastern margins of the geographical distribution in Europe, populations of Cepaea nemoralis are sparse and limited to urban environments to which they are possibly confined by relatively warmer climates. In 1999 we introduced 1101 C. nemoralis individuals originating from nine urban populations to a rural location in the area. The snails established a viable population, which suggests that confinement to urban settings is dispersal‐ rather than climate‐limited. The snails filled available habitats at a rate of approximately 400–600 m2 year?1. On the whole, morph frequencies remained remarkably stable; changes that occurred are attributable to segregation of alleles or chromosomes. However, snails responded to habitat heterogeneity: consistent and predictable divergence occurred between habitat types, such that light‐shelled snails were repeatedly more frequent in the open than in adjoining shaded habitats. This suggests the operation of climatic and/or visual selection. As the whole area encompassing seven distinct habitat patches was only 0.3 ha, and the maximum duration of population divergence was only 11 years (fewer than four snail generations), these results indicate extremely small temporal and spatial scales of adaptation during initial phases of population establishment and spread. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 462–470.  相似文献   

18.
1. The effects of habitat isolation, persistence, and host‐plant structure on the incidence of dispersal capability (per cent macroptery) in populations of the delphacid planthopper Toya venilia were examined throughout the British Virgin Islands. The host plant of this delphacid is salt grass Sporobolus virginicus, which grows either in undisturbed habitats (large expanses on intertidal salt flats and around the margins of salt ponds, or small patches of sparse vegetation on sand dunes along the shore), or in less persistent, disturbed habitats (managed lawns). 2. Both sexes of T. venilia were significantly more macropterous in disturbed habitats (77.1% in males, 12.5% in females) than in more persistent, undisturbed habitats (19.2% in males, < 1% in females). 3. Males exhibited significantly higher levels of macroptery (26.9 ± 7.6%) than did females (2.0 ± 1.7%), and per cent macroptery was positively density dependent for both sexes in field populations. 4. There was no evidence that the low incidence of female macroptery in a subset of island populations inhabiting natural habitats (1.7 ± 1.2%) was attributable to the effects of isolation on oceanic islands. The incidence of macroptery in British Virgin Island populations of T. venilia was not different from that observed in mainland delphacid species existing in habitats of similar duration. 5. Rather, the persistence of most salt grass habitats throughout the British Virgin Islands best explains the evolution of flight reduction in females of this island‐inhabiting delphacid. 6. Males were significantly more macropterous in populations occupying dune vegetation (37.6 ± 9.8%) than in populations occupying salt flat–pond margin habitats (7.6 ± 5.6%). By contrast, females exhibited low levels of macroptery in both dune (0%) and salt flat–pond margin (< 1%) habitats. Variation in salt‐grass structure probably underlies this habitat‐related difference in macroptery because flight‐capable males of planthoppers are better able to locate females in the sparse‐structured grass growing on dunes. This habitat‐related difference in male macroptery accounted for the generally higher level of macroptery observed in males than in females throughout the islands. 7. The importance of habitat persistence and structure in explaining the incidence of dispersal capability in T. venilia is probably indicative of the key role these two factors play in shaping the dispersal strategies of many insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号