首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The effect of copper on the degradation by soil micro-organisms of phenanthrene, a polycyclic aromatic hydrocarbon, was investigated. METHODS AND RESULTS: Inert nylon filters were incubated in the soil for 28 days at 25 degrees C. Each filter was inoculated with a soil suspension, phenanthrene (400 ppm), copper (0, 70, 700 or 7000 ppm) and nitrogen/phosphorus sources. The filters were assessed for phenanthrene degradation, microbial respiration and colonization. Phenanthrene degradation proceeded even at toxic copper levels (700/7000 ppm), indicating the presence of phenanthrene-degrading, copper-resistant and/or -tolerant microbes. However, copper at these high levels reduced microbial activity (CO2 evolution). CONCLUSION: High levels of copper caused an incomplete mineralization of phenanthrene and possible accumulation of its metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of heavy metals in soils could seriously affect the bioremediation of PAH-polluted environments.  相似文献   

2.
Schwartz E  Scow KM 《Biodegradation》2001,12(3):201-207
Phenanthrene, a polycyclic aromatic hydrocarbon, becomes increasingly unavailable to microorganisms for degradation as it ages in soil. Consequently, many bioaugmentation efforts to remediate polycyclic aromatic hydrocarbons in soil have failed. We studied theeffect of repeatedly inoculating a soil with a phenanthrene-degrading Arthrobacter sp. on the mineralization kinetics of low concentrations of phenanthrene. After the first inoculation, the initial mineralization rate of 50 ng/g phenanthrene declined in a biphasicexponential pattern. By three hundred hours after inoculation, there was no difference in mineralization rates between the inoculated and uninoculated treatments even though a large fraction of the phenanthrene had not yet been mineralized. A second and third inoculation significantly increased the mineralization rate, suggesting that, though themineralization rate declined, phenanthrene remained bioavailable. Restirring the soil, without inoculation, did not produce similar increases in mineralization rates, suggesting absence of contact between cells and phenanthrene on a larger spatial scale (>mm) is not the cause of the mineralization decline. Bacteria inoculated into soil 280 hours beforethe phenanthrene was added could not maintain phenanthrene degradation activity. We suggest sorption lowered bioavailability of phenanthrene below an induction threshold concentration for metabolic activity of phenanthrene-degrading bacteria.  相似文献   

3.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment.  相似文献   

4.
Priming is an increase in soil organic carbon decomposition following input of labile organic carbon. In temperate soils where biological activity is limited commonly by nitrogen availability, priming is expected to occur through microbial acquisition of nitrogen from organic matter or stimulated activity of recalcitrant-carbon degrading microorganisms. However, these priming mechanisms have not yet been assessed in strongly weathered tropical forest soils where biological activity is often limited by the availability of phosphorus. We examined whether microbial nutrient limitation or community dynamics drive priming in three lowland tropical forest soils of contrasting fertility (‘low’, ‘mid’ and ‘high’) by applying C4-sucrose (alone or in combination with nutrients; nitrogen, phosphorus and potassium) and measuring (1) the δ13C-signatures in respired CO2 and in phospholipid fatty acid (PLFA) biomarkers, and (2) the activities of enzymes involved in nitrogen (N-acetyl β-glucosaminidase), phosphorus (phosphomonoesterase) and carbon (β-glucosidase, cellobiohydrolase, xylanase, phenol oxidase) acquisition from organic compounds. Priming was constrained in part by nutrient availability, because priming was greater when sucrose was added alone compared to when added with nutrients. However, the greatest priming with sucrose addition alone was detected in the medium fertility soil. Priming occurred in parallel with stimulated activity of phosphomonoesterase and phenol oxidase (but not N-acetyl β-glucosaminidase); when sucrose was added with nutrients there were lower activities of phosphomonoesterase and phenol oxidase. There was no evidence according to PLFA δ13C-incorporation that priming was caused by specific groups of recalcitrant-carbon degrading microorganisms. We conclude that priming occurred in the intermediate fertility soil following microbial mineralization of organic nutrients (phosphorus in particular) and suggest that priming was constrained in the high fertility soil by high nutrient availability and in the low fertility soil by the low concentration of soil organic matter amenable to priming. This first study of priming mechanisms in tropical forest soils indicates that input of labile carbon can result in priming by microbial mineralization of organic nutrients, which has important implications for understanding the fate of organic carbon in tropical forest soils.  相似文献   

5.
Seasonal net nitrogen (N) and phosphorus (P) mineralization was investigated at Abisko, Swedish Lapland in soils of a subarctic heath and in soils of a colder (by about 4° C), high altitude fellfield by (a) using in situ soil incubation in soils which had been shaded or subjected to two levels of increased temperature, combined with (b) reciprocal transplantation of soils between the two sites. Proportionally large and significant net seasonal mineralization of N, in contrast to non-significant P mineralization, was found in untransplanted and transplanted fellfield soil. In contrast, P was mineralized in proportionally large amounts, in contrast to low N mineralization, in the transplanted and untransplanted heath soil. The differences indicate that P was strongly immobilized in relation to N at the fellfield and that N was more strongly immobilized than P in the heath soil. The immobilization in both soils remained high even after a temperature change of 4–5° C experienced by transplanted soils. Air temperature increases of up to 4–5° C in greenhouses resulted in a soil temperature increase of 1–2° C and did not cause any extra increase of net N and P mineralization. The results suggest that soil temperature increases of up to 2° C, which are likely to occur by the end of the next century as an effect of a predicted 4–5° C rise in air temperature, have only small effects on net mineralization in at least two characteristic tundra soils. These effects are probably smaller than the natural fluctuation of plant available nutrients from site to site, even within the same plant community. A further soil temperature increase of up to 4–5° C may enhance decomposition and gross mineralization, but the rate of net mineralization, and hence the change of nutrient availability to the plants, depends on the extent of microbial immobilization of the extra nutrients released.  相似文献   

6.
Once the weathering of parent material ceases to supply significant inputs of phosphorus (P), vegetation depends largely on the decomposition of litter and soil organic matter and the associated mineralization of organic P forms to provide an adequate supply of this essential nutrient. At the same time, the decomposition of litter is often characterized by the immobilization of nutrients, suggesting that nutrient availability is a limiting factor for this process. Immobilization temporally decouples nutrient mineralization from decomposition and may play an important role in nutrient retention in low-nutrient ecosystems. In this study, we used a common substrate to study the effects of native soil P availability as well as artificially elevated P availability on litter decomposition rates in a lowland Amazonian rain forest on highly weathered soils. Although both available and total soil P pools varied almost three fold across treatments, there was no significant difference in decomposition rates among treatments. Decomposition was rapid in all treatments, with approximately 50% of the mass lost over the 11-month study period. Carbon (C) and nitrogen (N) remaining and C:N ratios were the most effective predictors of amount of mass remaining at each time point in all treatments. Fertilized treatments showed significant amounts of P immobilization (P < 0.001). By the final collection point, the remaining litter contained a quantity equivalent to two-thirds of the initial P and N, even though only half of the original mass remained. In these soils, immobilization of nutrients in the microbial biomass, late in the decomposition process, effectively prevents the loss of essential nutrients through leaching or occlusion in the mineral soil.  相似文献   

7.
Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.  相似文献   

8.
The sorption of organic contaminants by natural organic matter (NOM) often limits substrate bioavailability and is an important factor affecting microbial degradation rates in soils and sediments. We hypothesized that reduced substrate bioavailability might influence which microbial assemblages are responsible for contaminant degradation under enrichment culture conditions. Our primary goal was to characterize enrichments in which different model organic solid phases were used to establish a range of phenanthrene bioavailabilities for soil microorganisms. Phenanthrene sorption coefficients (expressed as log K(D) values) ranged from 3.0 liters kg(-1) for Amberlite carboxylic acid cation-exchange resin (AMB) to 3.5 liters kg(-1) for Biobeads polyacrylic resin (SM7) and 4.2 liters kg(-1) for Biobeads divinyl benzene resin (SM2). Enrichment cultures were established for control (no sorptive phase), sand, AMB, SM7, and SM2 treatments by using two contaminated soils (from Dover, Ohio, and Libby, Mont.) as the initial inocula. The effects of sorption by model phases on the degradation of phenanthrene were evaluated for numerous transfers in order to obtain stable microbial assemblages representative of sorptive and nonsorptive enrichment cultures and to eliminate the effects of the NOM present in the initial inoculum. Phenanthrene degradation rates were similar for each soil inoculum and ranged from 4 to 5 micromol day(-1) for control and sand treatments to approximately 0.4 micromol day(-1) in the presence of the SM7 sorptive phase. The rates of phenanthrene degradation in the highly sorptive SM2 enrichment culture were insignificant; consequently, stable microbial populations could not be obtained. Bacterial isolates obtained from serial dilutions of enrichment culture samples exhibited significant differences in rates of phenanthrene degradation performed in the presence of SM7, suggesting that enrichments performed in the presence of a sorptive phase selected for different microbial assemblages than control treatments containing solid phase phenanthrene.  相似文献   

9.
A study was undertaken to assess if corn (Zea mays L.) can enhance phenanthrene degradation in two soils inoculated with Pseudomonas sp. UG14Lr. Corn increased the number of UG14Lr cells in both soils, especially in the acidic soiL Phenanthrene was degraded to a greater extent in UG14Lr-inoculated or corn-planted soils than uninoculated and unplanted soils. The spiked phenanthrene was completely removed within 70 days in all the treatments in slightly alkaline soil. However, in acidic soil, complete phenanthrene removal was found only in the corn-planted treatments. The shoot and root lengths of corn grown in UG14Lr-inoculated soils were not different from those in non-inoculated soil between the treatments. The results showed that in unplanted soil, low pH adversely affected the survival and phenanthrene degradation ability of UG14Lr. Planting of corn significantly enhanced the survival of UG14Lr cells in both the bulk and rhizospheric soil, and this in turn significantly improved phenanthrene degradation in acidic soil. Re-inoculation of UG14Lr in the acidic soil increased the number of UG14Lr cells and enhanced phenanthrene degradation in unplanted soil. However, in corn-planted acidic soils, re-inoculation of UG14Lr did not further enhance the already active phenanthrene degradation occurring in both the bulk or rhizospheric soils.  相似文献   

10.
The continuous flow method was used to study the decomposition of uniformly tagged glucose in soil with different inorganic nitrogen and phosphorus levels. It was found that the amount of glucose carbon mineralized to carbon dioxide was higher if nitrogen and phosphorus were added together with the glucose. Some of the labelled carbon escaped from the soil and the amount of leached-out carbon was in inverse proportion to the amount of nitrogen and phosphorus in the soil. The level of mineral nutrient elements stimulated the rate of glucose mineralization in the initial phase of the continuous process. The rate of glucose mineralization in the steady state was stimulated in soil continuously enriched with glucose together with nitrogen and phosphorus. The quantitative relationship between the assimilation and oxidation of glucose carbon depended on the nitrogen and phosphorus concentration and was in inverse proportion to the mineral element level. The continuous addition of glucose stimulated decomposition of the native soil organic matter. The resultant priming effect was balanced, however, by the retention of glucose carbon in the soil, with the result that the carbon balance remained positive. The rate of glucose oxidation, the amount of carbon retained in the soil and the priming effect of glucose were strongly influenced by the flow rate.  相似文献   

11.
Phenanthrene biodegradation was investigated at different soil water contents [0.11, 0.22, 0.33, 0.44 g H2O (g soil)?1] to determine the effects of water availability on biodegradation rate. A subsurface horizon of Kennebec silty loam soil was used in this study. [9-14C] phenanthrene was dissolved in a mixture of organic contaminants that consisted of 76% decane, 6% ρ-xylene, 6% phenanthrene, 6% pristane, and 6% naphthalene, and then added to the soil. The highest rate of mineralization, in which 0.23% of the [9-14C] phenanthrene degraded to 14CO2 after 66 days of incubation, was observed at the soil water content of 0.44 g H2O/g dry soil. Most of the 14C remained in the soil as the parent compound or as nonextractable compounds by acetonitrile at the highest water content. Concentrations of nonextractable compounds increased with water content, but residual extractable phenanthrene decreased significantly with increasing water content, which presumably indicates that bio-transformation occurred. The mineralization analysis of radiolabeled 9th carbon in phenanthrene underestimated phenanthrene biodegradation. The strong adsorption and low solubility of phenanthrene contributed to the low mineralization of phenanthrene 9th carbon. The other components were subject to higher biological and abiotic dissipation processes with increasing soil water content.  相似文献   

12.
Leaf and soil nutrient levels interact with and may each influence the other. We hypothesize that to the extent soil fertility influences the nutritional state of trees, soil fertility should correlate with summer leaf nutrient levels, whereas to the extent that trees influence soil nutrient levels, the quality of leaf litterfall should correlate with soil fertility. We examined these correlations for five sympatric oak species (genus Quercus) in central coastal California. Soil fertility, including both nitrogen and especially phosphorus, correlated significantly with summer leaf nutrient levels. In contrast, phosphorus, but not nitrogen, in the leaf litterfall correlated positively with soil nutrients. These results suggest that soil nitrogen and phosphorus influence tree nutrient levels and that leaf phosphorus, but not leaf nitrogen, influence soil fertility under the trees. Feedback between the soil and the tree for phosphorus, but not nitrogen, is apparently significant and caused by species-specific differences in leaf quality and not by litterfall quality differences within a species. We also compared functional differences between the evergreen and deciduous oak species at our study site. There were no differences in soil nitrogen and only small differences for soil phosphorus between the phenological types. Differences in leaf nutrient concentration were much more pronounced, with the evergreen species having substantially lower levels of both nitrogen and phosphorus. Evergreen species conserved more phosphorus, but not more nitrogen, than the deciduous species, but there was no consistent relationship between retranslocation and either soil nitrogen or phosphorus. These results do not support the hypothesis that evergreenness is an adaptation to low soil fertility in this system.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of the environment. But is their microbial degradation equally wide in distribution? We estimated the PAH degradation capacity of 13 soils ranging from pristine locations (total PAHs ≈ 0.1 mg kg?1) to heavily polluted industrial sites (total PAHs ≈ 400 mg kg?1). The size of the pyrene- and phenanthrene-degrading bacterial populations was determined by most probable number (MPN) enumeration. Densities of phenanthrene degraders reflected previous PAH exposure, whereas pyrene degraders were detected only in the most polluted soils. The potentials for phenanthrene and pyrene degradation were measured as the mineralization of 14C-labeled spikes. The time to 10% mineralization of added 14C phenanthrene and 14C pyrene was inversely correlated with the PAH content of the soils. Substantial 14C phenanthrene mineralization in all soils tested, including seven unpolluted soils, demonstrated that phenanthrene is not a suitable model compound for predicting PAH degradation in soils. 14C pyrene was mineralized by all Danish soil samples tested, regardless of whether they were from contaminated sites or not, suggesting that in industrialized areas the background level of pyrene is sufficient to maintain pyrene degradation traits in the gene pool of soil microorganisms. In contrast, two pristine forest soils from northern Norway and Ghana mineralized little 14C pyrene within the 140-day test period. Mineralization of phenanthrene and pyrene by all Danish soils suggests that soil microbial communities of inhabited areas possess a sufficiently high PAH degradation capacity to question the value of bioaugmentation with specific PAH degraders for bioremediation.  相似文献   

14.
We investigated nutrient limitations during hydrocarbon degradation in a sandy soil and found that fixed nitrogen was initially a limiting nutrient but that N limitation could sometimes be overcome by N2 fixation. Hydrocarbon biodegradation was examined in an unsaturated sandy soil incubated aerobically at 20 degrees C with propane or butane and various added nutrients. Propane and butane degradation proceeded similarly during the first 3 months of incubation. That is, bacteria in soil amended with N oxidized these hydrocarbons more rapidly than in controls without nutrient additions or in soil with added phosphate or trace minerals. Both propane- and butane-amended soil apparently became N limited after the initial available inorganic N was utilized, as indicated by a decrease in the rates of hydrocarbon degradation. After 3 months, propane and butane degradation proceeded differently. Bacteria in propane-degrading soil apparently remained N limited because propane degradation rates stayed low unless more N was added. In contrast, bacteria in butane-degrading soil appeared to overcome their N limitation because butane degradation rates later increased regardless of whether more N was added. Analyses of total N and acetylene reduction assays supported this apparent surplus of N in butane-amended soil. Total N was significantly (P < 0.01) higher in soil incubated with butane and no N amendments than in soil incubated with propane, even when the latter was amended with N. Acetylene reduction occurred only in butane-amended soil. These results indicate that N2 fixation occurred in butane-amended soil but not in propane-amended soil.  相似文献   

15.
Agronomic practices such as crop residue return and additional nutrient supply are recommended to increase soil organic carbon (SOC) in arable farmlands. However, changes in the priming effect (PE) on native SOC mineralization in response to integrated inputs of residue and nutrients are not fully known. This knowledge gap along with a lack of understanding of microbial mechanisms hinders the ability to constrain models and to reduce the uncertainty to predict carbon (C) sequestration potential. Using a 13C‐labeled wheat residue, this 126‐day incubation study examined the dominant microbial mechanisms that underpin the PE response to inputs of wheat residue and nutrients (nitrogen, phosphorus and sulfur) in two contrasting soils. The residue input caused positive PE through “co‐metabolism,” supported by increased microbial biomass, C and nitrogen (N) extracellular enzyme activities (EEAs), and gene abundance of certain microbial taxa (Eubacteria, β‐Proteobacteria, Acidobacteria, and Fungi). The residue input could have induced nutrient limitation, causing an increase in the PE via “microbial nutrient mining” of native soil organic matter, as suggested by the low C‐to‐nutrient stoichiometry of EEAs. At the high residue, exogenous nutrient supply (cf. no‐nutrient) initially decreased positive PE by alleviating nutrient mining, which was supported by the low gene abundance of Eubacteria and Fungi. However, after an initial decrease in PE at the high residue with nutrients, the PE increased to the same magnitude as without nutrients over time. This suggests the dominance of “microbial stoichiometry decomposition,” supported by higher microbial biomass and EEAs, while Eubacteria and Fungi increased over time, at the high residue with nutrients cf. no‐nutrient in both soils. Our study provides novel evidence that different microbial mechanisms operate simultaneously depending on organic C and nutrient availability in a residue‐amended soil. Our results have consequences for SOC modeling and integrated nutrient management employed to increase SOC in arable farmlands.  相似文献   

16.
The sorption of organic contaminants by natural organic matter (NOM) often limits substrate bioavailability and is an important factor affecting microbial degradation rates in soils and sediments. We hypothesized that reduced substrate bioavailability might influence which microbial assemblages are responsible for contaminant degradation under enrichment culture conditions. Our primary goal was to characterize enrichments in which different model organic solid phases were used to establish a range of phenanthrene bioavailabilities for soil microorganisms. Phenanthrene sorption coefficients (expressed as log KD values) ranged from 3.0 liters kg−1 for Amberlite carboxylic acid cation-exchange resin (AMB) to 3.5 liters kg−1 for Biobeads polyacrylic resin (SM7) and 4.2 liters kg−1 for Biobeads divinyl benzene resin (SM2). Enrichment cultures were established for control (no sorptive phase), sand, AMB, SM7, and SM2 treatments by using two contaminated soils (from Dover, Ohio, and Libby, Mont.) as the initial inocula. The effects of sorption by model phases on the degradation of phenanthrene were evaluated for numerous transfers in order to obtain stable microbial assemblages representative of sorptive and nonsorptive enrichment cultures and to eliminate the effects of the NOM present in the initial inoculum. Phenanthrene degradation rates were similar for each soil inoculum and ranged from 4 to 5 μmol day−1 for control and sand treatments to approximately 0.4 μmol day−1 in the presence of the SM7 sorptive phase. The rates of phenanthrene degradation in the highly sorptive SM2 enrichment culture were insignificant; consequently, stable microbial populations could not be obtained. Bacterial isolates obtained from serial dilutions of enrichment culture samples exhibited significant differences in rates of phenanthrene degradation performed in the presence of SM7, suggesting that enrichments performed in the presence of a sorptive phase selected for different microbial assemblages than control treatments containing solid phase phenanthrene.  相似文献   

17.
West Coast prairies in the US are an endangered ecosystem, and effective conservation will require an understanding of how changing climate will impact nutrient cycling and availability. We examined how seasonal patterns and micro-heterogeneity in edaphic conditions (% moisture, total organic carbon, % clay, pH, and inorganic nitrogen and phosphorus) control carbon, nitrogen, and phosphorus cycling in an upland prairie in western Oregon, USA. Across the prairie, we collected soils seasonally and measured microbial respiration, net nitrogen mineralization, net nitrification, and phosphorus availability under field conditions and under experimentally varied temperature and moisture treatments. The response variables differed in the degree of temperature and moisture limitation within seasons and how these factors varied across sampling sites. In general, we found that microbial respiration was limited by low soil moisture year-round and by low temperatures in the winter. Net nitrogen mineralization and net nitrification were never limited by temperature, but both were limited by excessive soil moisture in winter, and net nitrification was also inhibited by low soil moisture in the summer. Factors that enhanced microbial respiration tended to decrease soil phosphorus availability. Edaphic factors explained 76% of the seasonal and spatial variation in microbial respiration, 35% of the variation in phosphorus availability, and 29% of the variation in net nitrification. Much of the variation in net nitrogen mineralization remained unexplained (R 2 = 0.19). This study, for the first time, demonstrates the complex seasonal controls over nutrient cycling in a Pacific Northwest prairie.  相似文献   

18.
Factors affecting the microbial degradation of phenanthrene in soil   总被引:9,自引:0,他引:9  
Summary Because phenanthrene was mineralized more slowly in soils than in liquid media, a study was conducted to determine the environmental factors that may account for the slow biodegradation in soil. Mineralization was enhanced by additions of phosphate but not potassium, and it was reduced by additions of nitrate. Aeration or amending the soil with glucose affected the rate of mineralization, although not markedly. Phenanthrene was sorbed to soil constituents, the extent of sorption being directly related to the percentage of organic matter in the soil. Soluble phenanthrene was not detected after addition of the compound to a muck soil. The rate of mineralization was slow in the organic soil and higher in mineral soils with lower percentages of organic matter. We suggest that sorption by soil organic matter slows the biodegradation of polycyclic aromatic hydrocarbons that are otherwise readily metabolized. Offprint requests to: M. Alexander  相似文献   

19.
陕北风沙区不同植被覆盖下的土壤养分特征   总被引:4,自引:0,他引:4  
李文斌  李新平 《生态学报》2012,32(22):6991-6999
选取了陕北定边县板凳滩风沙区四种典型植被覆盖下的风沙土壤,对其基本养分含量进行了测定。分析不同类型植被覆盖下的土壤养分含量特征、土壤养分含量层次特征以及土壤各层次养分含量之间的相关性,为风沙区土壤生态恢复重建及侵蚀土壤质量的恢复保育提供了科学依据。结果表明:(1)不同植被覆盖下的土壤对有机质、全氮、速效氮、速效磷的保持能力均为:小蒿草>羊草>沙蒿>苦豆子>无植被;对全磷的保持能力,各植被覆盖条件下差异不显著,但小蒿草覆盖下含量最高,羊草最低,且低于无植被;从土壤对全钾的保持能力来看,羊草覆盖下的全钾含量最高,小蒿草最低。(2)不同植被覆盖下的土壤养分含量层次变化除全磷和全钾变化微弱外,土壤有机质、全氮、速效氮、速效磷、速效钾含量均随着土层深度的增加而逐渐下降,且降低速度基本呈现出小蒿草>羊草>沙蒿>苦豆子>无植被。(3)不同植被覆盖下的土壤各层次养分含量之间的相关性以羊草最为密切,大体呈显著中度及以上正相关;沙蒿和苦豆子覆盖下的相关性稍弱,基本呈中度正相关;而小蒿草覆盖下的相关系数正负均有,相关性较为复杂。  相似文献   

20.
Distributions of many humid tropical tree species are associated with specific soil types. This specificity most likely results from processes at the seedling stage, but light rather than nutrient levels is generally considered the dominant limitation for seedling growth in the tropical forest understory. If nutrients are limiting and allocation to belowground resources differs, seedling growth responses to shade should also differ. Here we tested the effects of soil type and light environment on the seedling growth of two canopy tree species in the genus Inga with different soil-type and light-environment affinities as adults. Inga alba is a shade-tolerant soil generalist and I. oestediana is a light-demanding soil specialist. We used four native soils and three light levels (1 and 5% of full sun in shade houses and the forest understory). All growth variables were greatest in 5% full sun, with highest growth rates for the light-demanding soil-type specialist. Soil type significantly affected growth parameters, even at the lower light levels. The specialist grew best on the soils with the most soil phosphorus where adult trees typically occur. Leaf tissue nitrogen:phosphorus ratios suggest increased phosphorus limitation in the low phosphorus soils and with increased light level. Light and soil interacted to significantly affect seedling biomass allocation, growth, and net assimilation rates, indicating that the seedling shade responses were affected by soil type. Seedlings growing on high nutrient soil allocated less to roots and more to photosynthetic tissue. Adult distributions of these two Inga species may be a result of the different growth rates of seedlings in response to the interactive effects of light and soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号