首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the complete 14,985-nt sequence of the mitochondrial DNA of the horseshoe crab Limulus polyphemus (Arthropoda: Xiphosura). This mtDNA encodes the 13 protein, 2 rRNA, and 22 tRNA genes typical for metazoans. The arrangement of these genes and about half of the sequence was reported previously; however, the sequence contained a large number of errors, which are corrected here. The two strands of Limulus mtDNA have significantly different nucleotide compositions. The strand encoding most mitochondrial proteins has 1. 25 times as many A's as T's and 2.33 times as many C's as G's. This nucleotide bias correlates with the biases in amino acid content and synonymous codon usage in proteins encoded by different strands and with the number of non-Watson-Crick base pairs in the stem regions of encoded tRNAs. The sizes of most mitochondrial protein genes in Limulus are either identical to or slightly smaller than those of their Drosophila counterparts. The usage of the initiation and termination codons in these genes seems to follow patterns that are conserved among most arthropod and some other metazoan mitochondrial genomes. The noncoding region of Limulus mtDNA contains a potential stem-loop structure, and we found a similar structure in the noncoding region of the published mtDNA of the prostriate tick Ixodes hexagonus. A simulation study was designed to evaluate the significance of these secondary structures; it revealed that they are statistically significant. No significant, comparable structure can be identified for the metastriate ticks Rhipicephalus sanguineus and Boophilus microplus. The latter two animals also share a mitochondrial gene rearrangement and an unusual structure of mt-tRNA(C) that is exactly the same association of changes as previously reported for a group of lizards. This suggests that the changes observed are not independent and that the stem-loop structure found in the noncoding regions of Limulus and Ixodes mtDNA may play the same role as that between trnN and trnC in vertebrates, i.e., the role of lagging strand origin of replication.  相似文献   

2.
We previously reported the sequence of a 9260-bp fragment of mitochondrial (mt) DNA of the cephalopod Loligo bleekeri [J. Sasuga et al. (1999) J. Mol. Evol. 48:692–702]. To clarify further the characteristics of Loligo mtDNA, we have sequenced an 8148-bp fragment to reveal the complete mt genome sequence. Loligo mtDNA is 17,211 bp long and possesses a standard set of metazoan mt genes. Its gene arrangement is not identical to any other metazoan mt gene arrangement reported so far. Three of the 19 noncoding regions longer than 10 bp are 515, 507, and 509 bp long, and their sequences are nearly identical, suggesting that multiplication of these noncoding regions occurred in an ancestral Loligo mt genome. Comparison of the gene arrangements of Loligo, Katharina tunicata, and Littorina saxatilis mt genomes revealed that 17 tRNA genes of the Loligo mt genome are adjacent to noncoding regions. A majority (15 tRNA genes) of their counterparts is found in two tRNA gene clusters of the Katharina mt genome. Therefore, the Loligo mt genome (17 tRNA genes) may have spread over the genome, and this may have been coupled with the multiplication of the noncoding regions. Maximum likelihood analysis of mt protein genes supports the clade Mollusca + Annelida + Brachiopoda but fails to infer the relationships among Katharina, Loligo, and three gastropod species. Received: 9 May 2001 / Accepted: 3 October 2001  相似文献   

3.
4.
The nucleotide sequences of the mitochondrial DNA (mtDNA) molecules of two nematodes, Caenorhabditis elegans [13,794 nucleotide pairs (ntp)], and Ascaris suum (14,284 ntp) are presented and compared. Each molecule contains the genes for two ribosomal RNAs (s-rRNA and l-rRNA), 22 transfer RNAs (tRNAs) and 12 proteins, all of which are transcribed in the same direction. The protein genes are the same as 12 of the 13 protein genes found in other metazoan mtDNAs: Cyt b, cytochrome b; COI-III, cytochrome c oxidase subunits I-III; ATPase6, Fo ATPase subunit 6; ND1-6 and 4L, NADH dehydrogenase subunits 1-6 and 4L: a gene for ATPase subunit 8, common to other metazoan mtDNAs, has not been identified in nematode mtDNAs. The C. elegans and A. suum mtDNA molecules both include an apparently noncoding sequence that contains runs of AT dinucleotides, and direct and inverted repeats (the AT region: 466 and 886 ntp, respectively). A second, apparently noncoding sequence in the C. elegans and A. suum mtDNA molecules (109 and 117 ntp, respectively) includes a single, hairpin-forming structure. There are only 38 and 89 other intergenic nucleotides in the C. elegans and A. suum mtDNAs, and no introns. Gene arrangements are identical in the C. elegans and A. suum mtDNA molecules except that the AT regions have different relative locations. However, the arrangement of genes in the two nematode mtDNAs differs extensively from gene arrangements in all other sequenced metazoan mtDNAs. Unusual features regarding nematode mitochondrial tRNA genes and mitochondrial protein gene initiation codons, previously described by us, are reviewed. In the C. elegans and A. suum mt-genetic codes, AGA and AGG specify serine, TGA specifies tryptophan and ATA specifies methionine. From considerations of amino acid and nucleotide sequence similarities it appears likely that the C. elegans and A. suum ancestral lines diverged close to the time of divergence of the cow and human ancestral lines, about 80 million years ago.  相似文献   

5.
6.
J. L. Boore  W. M. Brown 《Genetics》1995,141(1):305-319
We have determined the complete nucleotide (nt) sequence of the mitochondrial genome of an oligochaete annelid, the earthworm Lumbricus terrestris. This genome contains the 37 genes typical of metazoan mitochondrial DNA (mtDNA), including ATPase8, which is missing from some invertebrate mtDNAs. ATPase8 is not immediately upstream of ATPase6, a condition found previously only in the mtDNA of snails. All genes are transcribed from the same DNA strand. The largest noncoding region is 384 nt and is characterized by several homopolymer runs, a tract of alternating TA pairs, and potential secondary structures. All protein-encoding genes either overlap the adjacent downstream gene or end at an abbreviated stop codon. In Lumbricus mitochondria, the variation of the genetic code that is typical of most invertebrate mitochondrial genomes is used. Only the codon ATG is used for translation initiation. Lumbricus mtDNA is A + T rich, which appears to affect the codon usage pattern. The DHU arm appears to be unpaired not only in tRNA(ser(AGN)), as is typical for metazoans, but perhaps also in tRNA(ser(UCN)), a condition found previously only in a chiton and among nematodes. Relating the Lumbricus gene organization to those of other major protostome groups requires numerous rearrangements.  相似文献   

7.
Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini.   总被引:6,自引:0,他引:6  
The evolution of the Old World monkey tribe Papionini, composed of macaques, baboons, mandrills, drills, and mangabeys, was examined using mitochondrial DNA (mtDNA) sequence data on the cytochrome oxidase subunit II gene. When analyzed cladistically, these data support a baboon clade of savannah (Papio) plus gelada (Theropithecus) baboons, as well as a clade containing drill (Mandrillus) plus mangabey (Cerocebus) genera. This result stands in opposition to most morphological phylogenies, which break up the baboon clade by placing Papio and Mandrillus as sister taxa and Theropithecus as a more distantly related lineage. Analyses of COII gene sequences also suggest that the papionin ancestral stock divided into two lineages, one leading to macaques and the other to the purely African genera. From a molecular evolutionary perspective, the papionin COII gene sequences reveal a pattern of amino acid replacements concentrated in the regions spanning the mitochondrial membrane.  相似文献   

8.
Complete sequence determination of the mitochondrial (mt) genome of the sea scallop Placopecten magellanicus reveals a molecule radically different from that of the standard metazoan. With a minimum length of 30,680 nucleotides (nt; with one copy of a 1.4 kilobase (kb) repeat) and a maximum of 40,725 nt, it is the longest reported metazoan mitochondrial DNA (mtDNA). More than 50% of the genome is noncoding (NC), consisting of dispersed, imperfectly repeated sequences that are associated with tRNAs or tRNA-like structures. Although the genes for atp8 and two tRNAs were not discovered, the genome still has the potential for encoding 46 genes (the additional genes are all tRNAs), 9 of which encode tRNAs for methionine. The coding portions appear to be evolving at a rate consistent with other members of the pectinid clade. When the NC regions containing “dispersed repeat families” are examined in detail, we reach the conclusion that transposition involving tRNAs or tRNA-like structures is occurring and is responsible for the large size and abundance of noncoding DNA in the molecule. The rarity of enlarged mt genomes in the face of a demonstration that they can exist suggests that a small, compact organization is an actively maintained feature of metazoan mtDNA. Reviewing Editor: Gail Simmons  相似文献   

9.
The complete sequence of the mitochondrial genome of the plant parasitic nematode Xiphinema americanum sensu stricto has been determined. At 12626bp it is the smallest metazoan mitochondrial genome reported to date. Genes are transcribed from both strands. Genes coding for 12 proteins, 2 rRNAs and 17 putative tRNAs (with the tRNA-C, I, N, S1, S2 missing) are predicted from the sequence. The arrangement of genes within the X. americanum mitochondrial genome is unique and includes gene overlaps. Comparisons with the mtDNA of other nematodes show that the small size of the X. americanum mtDNA is due to a combination of factors. The two mitochondrial rRNA genes are considerably smaller than those of other nematodes, with most of the protein encoding and tRNA genes also slightly smaller. In addition, five tRNAs genes are absent, lengthy noncoding regions are not present in the mtDNA, and several gene overlaps are present. [Reviewing Editor: Dr. Yues van de Peer] F. Lamberti: Deceased, 2004  相似文献   

10.
We report the presence, in the mitochondrial DNA (mtDNA) of all of the sexual species of the salamander family Ambystomatidae, of a shared 240- bp intergenic spacer between tRNAThr and tRNAPro. We place the intergenic spacer in context by presenting the sequence of 1,746 bp of mtDNA from Ambystoma tigrinum tigrinum, describe the nucleotide composition of the intergenic spacer in all of the species of Ambystomatidae, and compare it to other coding and noncoding regions of Ambystoma and several other vertebrate mtDNAs. The nucleotide substitution rate of the intergenic spacer is approximately three times faster than the substitution rate of the control region, as shown by comparisons among six Ambystoma macrodactylum sequences and eight members of the Ambystoma tigrinum complex. We also found additional inserts within the intergenic spacers of five species that varied from 87-444 bp in length. The presence of the intergenic spacer in all sexual species of Ambystomatidae suggests that it arose at least 20 MYA and has been a stable component of the ambystomatid mtDNA ever since. As such, it represents one of the few examples of a large and persistent intergenic spacer in the mtDNA of any vertebrate clade.   相似文献   

11.
Ren Z  Zhu B  Ma E  Wen J  Tu T  Cao Y  Hasegawa M  Zhong Y 《Gene》2009,441(1-2):148-155
The complete nucleotide sequence of the mitochondrial (mt) genome of the crab-eating frog, Fejervarya cancrivora Gravenhorst (Amphibia: Anura: Ranidae), was determined. The mt genome is 17,843 bp long and contains 13 protein-coding (ATP6, ATP8, COI-III, ND1-6 and 4L, and Cyt b) and two ribosomal RNA (12S and 16SrRNA) genes. Although metazoan mt genomes typically encode 22 transfer RNA genes (tRNAs), the F. cancrivora mtDNA contains 23 tRNAs due to the presence of an extra copy of tRNA(Met). A major noncoding region and a prominent intergenic spacer corresponding to the control region and light-strand replication origin were also found. To confirm the phylogenetic position of F. cancrivora, we compared the gene arrangement with that of other anurans and performed phylogenetic analyses based on mt genomic data. The genome organization of F. cancrivora mtDNA differs from that of typical vertebrates and neobatrachian frogs but is identical with that of F. limnocharis, suggesting that the unique gene arrangement occurred in the common ancestor of the genus. Phylogenetic analyses supported the monophyly of the Fejervarya species used here as well as the dicroglossini clade. Although the family Ranidae as previously recognized (= Ranidae, Discoglossidae, and some other natatanuran families; sensu Frost et al., 2006) is shown as a clade in the maximum parsimony analysis, the maximum likelihood and the Bayesian analyses suggest the paraphyly of the Ranidae with respect to the families, Mantellidae and Rhacophoridae. Three-tandem duplications of gene regions followed by subsequent deletions of supernumerary genes were proposed to explain the evolution of the extra tRNA(Met) and translocation of ND5 from the original neobatrachian gene order.  相似文献   

12.
We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and it has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer noncoding nucleotides than any other mtDNA studied to date, with the largest noncoding region only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but it is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.  相似文献   

13.
14.
15.
The objectives of this work were to assess the mtDNA diversity of Bolivian South American camelid (SAC) populations and to shed light on the evolutionary relationships between the Bolivian camelids and other populations of SACs. We have analysed two different mtDNA regions: the complete coding region of the MT‐CYB gene and 513 bp of the D‐loop region. The populations sampled included Bolivian llamas, alpacas and vicunas, and Chilean guanacos. High levels of genetic diversity were observed in the studied populations. In general, MT‐CYB was more variable than D‐loop. On a species level, the vicunas showed the lowest genetic variability, followed by the guanacos, alpacas and llamas. Phylogenetic analyses performed by including additional available mtDNA sequences from the studied species confirmed the existence of the two monophyletic clades previously described by other authors for guanacos (G) and vicunas (V). Significant levels of mtDNA hybridization were found in the domestic species. Our sequence analyses revealed significant sequence divergence within clade G, and some of the Bolivian llamas grouped with the majority of the southern guanacos. This finding supports the existence of more than the one llama domestication centre in South America previously suggested on the basis of archaeozoological evidence. Additionally, analysis of D‐loop sequences revealed two new matrilineal lineages that are distinct from the previously reported G and V clades. The results presented here represent the first report on the population structure and genetic variability of Bolivian camelids and may help to elucidate the complex and dynamic domestication process of SAC populations.  相似文献   

16.
From the stirodont Arbacia lixula we determined the sequence of 5,127 nucleotides of mitochondrial DNA (mtDNA) encompassing 18 tRNAs, two complete coding genes, parts of three other coding genes, and part of the 12S ribosomal RNA (rRNA). The sequence confirms that the organization of mtDNA is conserved within echinoids. Furthermore, it underlines the following peculiar features of sea urchin mtDNA: the clustering of tRNAs, the short noncoding regulatory sequence, and the separation by the ND1 and ND2 genes of the two rRNA genes. Comparison with the orthologous sequences from the camarodont species Paracentrotus lividus and Strongylocentrotus purpuratus revealed that (1) echinoids have an extra piece on the amino terminus of the ND5 gene that is probably the remnant of an old leucine tRNA gene; (2) third-position codon nucleotide usage has diverged between A. lixula and the camarodont species to a significant extent, implying different directional mutational pressures; and (3) the stirodont-camarodont divergence occurred twice as long ago as did the P. lividus-S. purpuratus divergence.  相似文献   

17.
18.
The mtDNA of bees from 84 colonies of Turkish honeybees (Apis mellifera) was surveyed for variation at four diagnostic restriction sites and the sequence of a noncoding intergenic region. These colonies came from 16 locations, ranging from European Turkey and the western Mediterranean coast to the Caucasus Mountains along the Georgian border, the eastern Lake Van region, and the extreme south. Combined restriction site and sequence data revealed four haplotypes. Three haplotypes belonged to the eastern Mediterranean mtDNA lineage. The fourth haplotype, which had a novel restriction site pattern and noncoding sequence, was found in samples from the extreme south, near the Syrian border. We found two different noncoding sequences among the eastern Mediterranean haplotypes. The "Caucasian" sequence matches that described from A. m. caucasica, and the "Anatolian" sequence matches that of A. m. carnica. The frequency of the "Caucasian" sequence was highest (98-100%) in sites near the Georgian border and decreased steeply to the south and west. Elsewhere the Anatolian sequence was found. In European Turkey (Thrace) a restriction site polymorphism previously reported from A. m. carnica in Austria and the Balkans was present at high frequency. A novel mtDNA haplotype with a unique restriction site pattern and noncoding sequence was found among bees from Hatay, in the extreme south near the Syrian border. This haplotype differed from the three previously known lineages of honeybee mtDNA--African, western European, and eastern Mediterranean-and may represent a fourth mitochondrial lineage.  相似文献   

19.
Species-level DNA phylogenies frequently suffer from two shortcomings--gene trees usually are constructed from a single locus, and often species are represented by only one individual. To evaluate the effect of these two shortcomings, we tested phylogenetic hypotheses within the wigeons and allies, a clade of Anas ducks (Anatidae) composed of five species. We sequenced two nuclear introns from the Z-chromosome-linked chromo-helicase binding protein gene (CHD1Zb and CHD1Za) and the mitochondrial DNA (mtDNA) control region for multiple individuals sampled from widespread geographic locations. We compared these phylogenies to previously published phylogenies constructed from morphology and protein coding regions of mtDNA. Relative to other nuclear introns, CHD showed remarkable phylogenetic utility. Of the 26 CHD1Zb alleles identified, only one was shared between two species, and the combined CHD datasets revealed that four of the five species were consistent with monophyly. Several species shared mtDNA haplotypes, which probably was a result of interspecific hybridization. Overall, the nuclear CHD tree and the mtDNA tree were more congruent with coding regions of mtDNA than they were with morphology.  相似文献   

20.
The mitochondrial DNA (mtDNA) size of the terrestrial gastropod Albinaria turrita was determined by restriction enzyme mapping and found to be approximately 14.5 kb. Its partial gene content and organization were examined by sequencing three cloned segments representing about one-fourth of the mtDNA molecule. Complete sequences of cytochrome c oxidase subunit II (COII), and ATPase subunit 8 (ATPase8), as well as partial sequences of cytochrome c oxidase subunit I (COI), NADH dehydrogenase subunit 6 (ND6), and the large ribosomal RNA (IrRNA) genes were determined. Nine putative tRNA genes were also identified by their ability to conform to typical mitochondrial tRNA secondary structures. An 82-nt sequence resembles a noncoding region of the bivalve Mytilus edulis, even though it might contain a tenth tRNA gene with an unusual 5-nt overlap with another tRNA gene. The genetic code of Albinaria turrita appears to be the same as that of Drosophila and Mytilus edulis. The structures of COI and COII are conservative, but those of ATPase8 and ND6 are diversified. The sequenced portion of thelrRNA gene (1,079 nt) is characterized by conspicuous deletions in the 5 and 3 ends; this gene represents the smallest coelomate IrRNA gene so far known. Sequence comparisons of the identified genes indicate that there is greater difference between Albinaria and Mytilus than between Albinaria and Drosophila. An evolutionary analysis, based on COII sequences, suggests a possible nonmonophyletic origin of molluskan mtDNA. This is supported also by the absence of the ATPase8 gene in the mtDNA of Mytilus and nematodes, while this gene is present in the mtDNA of Albinaria and Cepaea nemoralis and in all other known coelomate metazoan mtDNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号