首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serine protease, C1r, initiates activation of the classical pathway of complement, which is a crucial innate defense mechanism against pathogens and altered-self cells. C1r both autoactivates and subsequently cleaves and activates C1s. Because complement is implicated in many inflammatory diseases, an understanding of the interaction between C1r and its target substrates is required for the design of effective inhibitors of complement activation. Examination of the active site specificity of C1r using phage library technology revealed clear specificity for Gln at P2 and Ile at P1′, which are found in these positions in physiological substrates of C1r. Removal of one or both of the Gln at P2 and Ile at P1′ in the C1s substrate reduced the rate of C1r activation. Substituting a Gln residue into the P2 of the activation site of MASP-3, a protein with similar domain structure to C1s that is not normally cleaved by C1r, enabled efficient activation of this enzyme. Molecular dynamics simulations and structural modeling of the interaction of the C1s activation peptide with the active site of C1r revealed the molecular mechanisms that particularly underpin the specificity of the enzyme for the P2 Gln residue. The complement control protein domains of C1r also made important contributions to efficient activation of C1s by this enzyme, indicating that exosite interactions were also important. These data show that C1r specificity is well suited to its cleavage targets and that efficient cleavage of C1s is achieved through both active site and exosite contributions.  相似文献   

2.
The Croonian Lecture, 1980. The complex proteases of the complement system   总被引:2,自引:0,他引:2  
The assembly and activation of the early components of complement, after their interaction with antibody-antigen complexes, are described in terms of the structures of the different proteins taking part. C1q, a molecule of unique half collagen--half globular structure, binds to the second constant domain of the antibody molecules through its six globular heads. A tetrameric complex of C1r2-C1s2 binds to the collagenous tails and leads to formation of the serine-type proteases C1r and C1s. C1s activates C4, which forms a covalent bond between its alpha' chain and the Fab section of the antibody. C2 is also activated by C1s and associates with the bound C4 molecule to form C42, a labile protease that activates C3, but which loses activity as the C2 peptide chains dissociate from C4. C2, by analogy with factor B, the equivalent component of the alternative pathway of activation, appears to be a novel type of serine protease with a similar catalytic site but different activation mechanism to the serine proteases that have been described previously.  相似文献   

3.
Serum mannan-binding protein (S-MBP), a lectin specific for mannose and N-acetylglucosamine, was documented to activate complement through the classical pathway. In this study, we examined the mechanism that initiates this activation. By a passive hemolysis test using sheep erythrocytes coated with yeast mannan, the activation of complement by human S-MBP was shown to proceed in the absence of C1q. The following binding studies using 125I-labeled C1r2s2 and C1s indicated that the activated form of C1r2s2 bound to S-MBP located on the surface of the cells with high affinity. The binding of C1s to the cell-bound S-MBP require the presence of C1r, suggesting that C1r2s2 binds to S-MBP through C1r. The activation of C1s from a proenzyme to a protease was mediated by cell-bound S-MBP in the presence of C1r and the activated protease remained associated with the cells and was not released into the medium. The activation of complement with S-MBP was a solid phase event and did not proceed in a fluid phase. On the basis of these results, it was concluded that S-MBP is responsible for the initiation of carbohydrate-mediated complement activation as C1q does in immune complex-mediated complement activation.  相似文献   

4.
1. Proenzymic C1r was purified from human plasma in a two-step technique involving indirect affinity chromatography on Sepharose Ig anti-C1s. The capacity of C1r to monomerize at pH 5.0 and to redimerize at neutral pH was used for selective elution of C1r. The yield in purified C1r was 39% from plasma; no trace of contaminating serine proteases was detected from [3H]diisopropyl phosphorofluoridate labelling of C1r. 2. C14 was able to undergo a two-way autoactivation: an intramolecular catalytic process catalysed by proenzymic C1r itself and an intermolecular reaction catalysed by activated C1r formed in the process of the reaction. DFP (5mM) and C1 Inh at a C1 Inh/C1r ratio of 1:1 were effective on the solely intermolecular activation, leading to partial inhibition of the autoactivation from proenzymic C1r: C1r formed during the activation was titrated by the inhibitors. Calcium, high ionic strength or acid pH decreased C1r activation. The pH effect was characterized by a slowed-down reaction below pH 6.0 and no net influence at values as high as 10.5. The two types of activation developed similarly as a function of pH. 3. Peripheral iodination of C1r revealed differences in label distribution between proenzymic (A chain moiety 48%, B chain moiety 52%) and activated C1r (A chain 20%, B chain 80%). Two different conformational states of C1r were also suggested by 125I-labelling at different temperatures.  相似文献   

5.
For biochemical characterization, the first component of human complement (C1) was reconstituted from physiologic concentrations of purified C1q, 125I C1r, and 131I C1s. Upon incubation at 37 degrees C, C1 spontaneously activated, as evidenced by the characteristic proteolysis of the C1r and C1s polypeptide chains as detected by SDS-PAGE analysis. This spontaneous C1 activation followed first-order kinetics (t 1/2 = 4 min and k = 0.173 min-1) with an activation energy of 19.1 kcal/mol. Spontaneous C1 activation was unaffected by the general protease inhibitor phenylmethylsulfonylfluoride (PMSF) but reversibly blocked by a known inhibitor of C1 activation, nitrophenylguanidinobenzoate (NPGB). Spontaneous C1 activation was measured at C1 concentrations ranging from 9 to 160 nM (i.e., 0.05 to 1.0 times physiologic concentrations). The data indicate that C1 spontaneously activates by an intramolecular autocatalytic mechanism, for first-order kinetics were observed over the entire concentration range with t 1/2 = 4 min at each concentration. However, the percentage of activable C1 decreased with dilution due to C1 dissociation (i.e., C1qr2s2 leads to C1q + C1r2s2). The observed concentration of C1 that spontaneously activated at each dilution equalled the concentration of C1 present as macromolecular C1. When reconstituted C1 was mixed with normal human serum (NHS) and then incubated at 37 degrees C, spontaneous C1 activation was completely inhibited. Pretreating NHS at 56 degrees C for 30 min destroyed its inhibitory activity. In conclusion, C1 spontaneously autoactivates at 37 degrees C by an intramolecular mechanism. This activation is suppressed in NHS.  相似文献   

6.
Mannan-binding lectin (MBL) plays a pivotal role in innate immunity by activating complement after binding carbohydrate moieties on pathogenic bacteria and viruses. Structural similarities shared by MBL and C1 complexes and by the MBL- and C1q-associated serine proteases, MBL-associated serine protease (MASP)-1 and MASP-2, and C1r and C1s, respectively, have led to the expectation that the pathways of complement activation by MBL and C1 complexes are likely to be very similar. We have expressed rMASP-2 and show that, whereas C1 complex autoactivation proceeds via a two-step mechanism requiring proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution.  相似文献   

7.
C1r is the modular serine protease (SP) that mediates autolytic activation of C1, the macromolecular complex that triggers the classical pathway of complement. The crystal structure of a mutated, proenzyme form of the catalytic domain of human C1r, comprising the first and second complement control protein modules (CCP1, CCP2) and the SP domain has been solved and refined to 2.9 A resolution. The domain associates as a homodimer with an elongated head-to-tail structure featuring a central opening and involving interactions between the CCP1 module of one monomer and the SP domain of its counterpart. Consequently, the catalytic site of one monomer and the cleavage site of the other are located at opposite ends of the dimer. The structure reveals unusual features in the SP domain and provides strong support for the hypothesis that C1r activation in C1 is triggered by a mechanical stress caused by target recognition that disrupts the CCP1-SP interfaces and allows formation of transient states involving important conformational changes.  相似文献   

8.
DMH1(4-[6-(4-Isopropoxyphenyl)pyrazolo [1,5-a]pyrimidin-3-yl] quinoline) is a compound C analogue with the structural modifications at the 3- and 6-positions in pyrazolo[1,5-a]pyrimidine backbone. Compound C was reported to inhibit both AMPK and Akt. Our preliminary work found that DMH1 activated Akt. Since Akt was involved in glucose metabolism, we aimed to identify the effects of DMH1 on glucose metabolism in L6 rat muscle cells and the potential mechanism. Results showed that DMH1 increased lactic acid release and glucose consumption in L6 rat muscle cells in a dose-dependent manner. DMH1 activated Akt in L6 cells. Akt inhibitor inhibited DMH1-induced Akt activation and DMH1-induced increases of glucose uptake and consumption. DMH1 had no cytotoxicity in L6 cells, but inhibited mitochondrial function and reduced ATP production. DMH1 showed no effect on AMPK, but in the presence of Akt inhibitor, DMH1 significantly activated AMPK. Compound C inhibited DMH1-induced Akt activation in L6 cells. Compound C inhibited DMH1-induced increase of glucose uptake, consumption and lactic acid release in L6 cells. DMH1 inhibited PP2A activity, and PP2A activator forskolin reversed DMH1-induced Akt activation. We concluded that DMH1 increased glucose metabolism through activating Akt and DMH1 activated Akt through inhibiting PP2A activity in L6 rat muscle cells. In view of the analogue structure of DMH1 and compound C and the contrasting effects of DMH1 and compound C on Akt, the present study provides a novel leading chemical structure targeting Akt with potential use for regulating glucose metabolism.  相似文献   

9.
Membrane fluidity and the probability of complement fixation   总被引:1,自引:0,他引:1  
We develop a mathematical theory of the role of membrane fluidity in the initiation of the IgG mediated complement cascade. The basic assumption is that C1q must be at least doubly bound to activate C1r, but that once C1q is doubly bound, C1r still requires some mean finite time tau to become enzymatically active. If C1q dissociates during this time interval, C1r cannot be activated. We consider the consequences of the simplest model of fluidity--one in which the difference between "fluid phase" lipids and "non-fluid phase" lipids is to allow protein mobility, but not a change in protein conformation. We show that under these conditions fluidity will effect C1r activation only if the rate of formation of multiply bound C1q is limited by diffusion in the membrane. If diffusion in the membrane is not rate-limiting, then, within the framework of this model, fluidity has no effect whatsoever on C1r activation. Thus, an experimental determination that C1q binding is not rate-limited by diffusion in the surface, but that fluidity does effect activation, would suggest a protein conformational change resulting perhaps from altered lipid composition. If diffusion in the surface does rate limit multiple C1q binding, we predict the possibility of an optimum diffusion coefficient for activation. For suitably chosen and reasonable parameter values this optimum will occur in the range (10(-11) less than or equal to D less than or equal to 10(-8) cm2/sec. We predict further, under these circumstances, a precipitous drop in the probability of activation above the optimum. The abrupt switch from a high probability of activation to essentially no probability of activation suggests the possibility of a very sensitive control mechanism exploitable by relatively small changes in membrane lipid composition.  相似文献   

10.
《MABS-AUSTIN》2013,5(4):672-680
Human IgG is produced with C-terminal lysines that are cleaved off in circulation. The function of this modification was unknown and generally thought not to affect antibody function. We recently reported that efficient C1q binding and complement-dependent cytotoxicity (CDC) requires IgG hexamerization at the cell surface. Here we demonstrate that C-terminal lysines may interfere with this process, leading to suboptimal C1q binding and CDC of cells opsonized with C-terminal lysine-containing IgG. After we removed these lysines with a carboxypeptidase, maximal complement activation was observed. Interestingly, IgG1 mutants containing either a negative C-terminal charge or multiple positive charges lost CDC almost completely; however, CDC was fully restored by mixing C-terminal mutants of opposite charge. Our data indicate a novel post-translational control mechanism of human IgG: human IgG molecules are produced in a pro-form in which charged C-termini interfere with IgG hexamer formation, C1q binding and CDC. To allow maximal complement activation, C-terminal lysine processing is required to release the antibody's full cytotoxic potential.  相似文献   

11.
12.
The proenzyme form of C1r catalytic domains was generated by limited proteolysis of native C1r with thermolysin in the presence of 4-nitrophenyl-4'-guanidinobenzoate. The final preparation, isolated by high-pressure gel permeation in the presence of 2 M-NaCl, was 70-75% proenzyme and consisted of a dimeric association of two gamma B domains, each resulting from cleavage of peptide bonds at positions 285 and 286 of C1r. Like native C1r, the isolated domains autoactivated upon incubation at 37 degrees C. Activation was inhibited by 4-nitrophenyl-4'-guanidinobenzoate but was nearly insensitive to di-isopropyl phosphorofluoridate; likewise, compared to pH 7.4, the rate of activation was decreased at pH 5.0, but was not modified at pH 10.0. In contrast, activation of the (gamma B)2 domains was totally insensitive to Ca2+. Activation of the catalytic domains, which was correlated with an irreversible increase of intrinsic fluorescence, comparable with that previously observed with native C1r [Villiers, Arlaud & Colomb (1983) Biochem. J. 215, 369-375], was reversibly inhibited at high ionic strength (2 M-NaCl), presumably through stabilization of a non-activatable conformational state. Detailed comparison of the properties of native C1r and its catalytic domains indicates that the latter contain all the structural elements that are necessary for intramolecular activation, but probably lack a regulatory mechanism associated with the N-terminal alpha beta region of C1r.  相似文献   

13.
The activation of subcomponents C1r and C1s in the first component of complement, C1, when bound to antibody-antigen complexes was investigated. Activation was followed both by the splitting of the peptide chains of subcomponents C1r and C1s and by the development of proteolytic activity. For the maximum rate of activation to occur, all components must be present in approximate molar proportions of antibody: C1q:C1r:C1s of 13:1:5:5. For activation of subcomponent C1s, subcomponents C1r or C1r, but not C1r inactivated with iPr2P-F (di-isopropyl phosphorofluorideate), are effective. For activation of subcomponent C1r, subcomponents C1s, C1s or C1s inactivated with iPr2P-F are effective. Subcomponent C1s is activated by C1r, and C1r is activated autocatalytically, probably through the formation of an intermediary C1r. in which the peptide chain is unsplit but a conformational change caused by interaction with the other components has led to the formation of a catalytic site able to split subcomponent C1r to C1r.  相似文献   

14.
C1r is the serine protease (SP) that mediates autoactivation of C1, the complex that triggers the classical complement pathway. We have determined the crystal structure of two fragments from the human C1r catalytic domain, each encompassing the second complement control protein (CCP2) module and the SP domain. The wild-type species has an active structure, whereas the S637A mutant is a zymogen. The structures reveal a restricted hinge flexibility of the CCP2-SP interface, and both are characterized by the unique alpha-helical conformation of loop E. The zymogen activation domain exhibits high mobility, and the active structure shows a restricted access to most substrate binding subsites. Further implications relevant to the C1r self-activation process are derived from protein-protein interactions in the crystals.  相似文献   

15.
Autoactivation of C1r is closely correlated with an irreversible increase of its intrinsic fluorescence. The activation and the fluorescence increase of C1r are accelerated on addition of activated C1r. Ca2+, di-isopropyl phosphorofluoridate and C1 inhibitor, which all inhibit, although to different extents, C1r activation, inhibit in parallel the fluorescence increase. C1r activation is blocked at pH 4.0-5.0, whereas it is accelerated at pH 10.5; under the same conditions the fluorescence increase shows parallel effects. No such fluorescence increase is observed during C1s activation by trace amounts of C1r. Far-u.v. circular-dichroism spectra of C1r indicate 73 and 78% of unordered form in both the proenzyme and the activated species respectively. The slight changes observed on activation are not restricted to C1r, as comparable results are obtained for proenzyme and activated C1s. C1r activation appears thus to involve structural changes leading to an 'activated state' distinct from the 'proenzyme state'. Monoclonal antibody to activated C1r is poorly reactive with proenzyme C1r, a finding that also supports this hypothesis.  相似文献   

16.
Subunit interactions in the first component of complement, C1   总被引:1,自引:0,他引:1  
Interactions between C1q and other subunits of C1 were analyzed by sucrose gradient ultracentrifugation. A zone of dilute, radioiodine labelled C1q was sedimented through uniform concentrations of either C1r2C1s2, C1r2, C1r2 or C1s(2). The dissociation constants were found to be 3 x 10(-9) M and 6 x 10(-9) M for C1r2C1s2 and C1r2 binding respectively. Hill coefficients of 1 indicated no cooperativity in these bindings. Positive cooperativity was found in binding of C1s to C1q. Dissociation constants of 2 x 10(-6) M and 5 x 10(-8) M were obtained form computer modelling of a two step binding mechanism. No interaction was detected between C1q and activated C1r2. The data indicate that most of the interactions between C1q and C1r2C1s2 originates from a strong binding to the C1r2 moiety of the zymogen complex. This interaction is lost upon activation of C1r2.  相似文献   

17.
C1r was unable to cleave and activate proenzyme C1s unless first incubated at 37 degrees C in the absence of calcium before the addition of C1s. The acquisition of ability to activate C1s was associated with, and paralleled by, cleavage of each of the two noncovalently bonded 95,000 dalton chains of the molecule into disulfide linked subunits of 60,000 and 35,000 daltons, respectively. Thus, C1r is converted from an inactive form into an enzyme, C1r, able to cleave and activate C1s by proteolytic cleavage in marked analogy to the activation of several other complement enzymes. Trypsin was also found to cleave C1r but at a different site, and its action did not lead to C1r activation. C1r activation was inhibited by calcium, polyanethol sulfonate, C1 inactivator, and DFP but not by a battery of other protease inhibitors. C1 inactivator inhibited C1r by forming a complex with C1r via sites located on the light chain of the molecule. In other studies, cleavage of C1r was not accelerated by the addition of C1r ot C1s. C1r and C1r were found to have the same m.w., sedimentation coefficient, and diffusion coefficients. They differed, however, in charge with C1r migrating as a Beta-globulin and C1r as a gammaglobulin on electrophoresis in agarose. The amino acid composition of C1r and of each of the two polypeptide chains of Clr was determined. Both chains contained carbohydrate. Proteolytic cleavage of the C1r molecule was found to occur on addition of aggregated IgG to a mixture of C1q, C1r, and C1s in the presence of calcium. Neither C1q, C1s nor aggregated IgG alone, not C1r nor C1s induced C1r cleavage. Liquoid, an inhibitor of C1 activation, inhibited C1r cleavage. Thus, proteolytic cleavage of C1r appears to be a biologically meaningful event occurring during the activation of C1.  相似文献   

18.
Immune complex-induced C1 activation and fluid phase C1 autoactivation have been compared in order to elucidate the immune complex role in the C1 activation process. Kinetic analyses revealed that immune complex-bound C1 activates seven times faster than fluid phase C1 spontaneously activates. The rate of spontaneous C1 activation increased after decreasing the solution ionic strength. In fact at one-half physiologic ionic strength (i.e., 0.08 M), the kinetics of spontaneous C1 activation were indistinguishable from the kinetics of activation of immune complex-bound C1 at physiologic ionic strength. The enhanced fluid phase C1 activation at low ionic strength resulted neither from C1 nor C1q aggregation, nor from selective effects on the C1r2S2 subunit; however, at the reduced ionic strength, the C1 association constant (defined for C1q + C1r2S2 in equilibrium C1qr2S2) did increase to 2.3 X 10(8) M-1, which is equal to that for C1 bound to an immune complex at physiologic ionic strength. Therefore, C1 can spontaneously activate in the fluid phase as rapidly as C1 on an immune complex when the strength of interaction between C1q and C1r2S2 is the same in both systems. In conclusion, under physiologic conditions, C1q and C1r2S2 are two weakly interacting proteins. Immune complexes provide a site for the assembly of a stable C1 complex, in which C1q and C1r2S2 remain associated long enough for C1q to activate C1r2S2. Thus, immune complexes enhance the intrinsic C1 autoactivation process by strengthening the association of C1q with C1r2S2.  相似文献   

19.
C1 activation is controlled by the regulatory protein C1-inhibitor (C1-INH). In contrast to immune-complex-induced activation, which is insensitive to C1-INH, antibody-independent activation of C1 is modulated by C1-INH. The mechanisms regulating nonimmune activation were studied with two phospholipids varying in their capacity to activate C1 in the presence of C1-INH: cardiolipin (CL) and phosphatidylglycerol (PG). Whereas C1-INH consistently suppressed activation by PG vesicles, a dose-dependent increase in C1 activation was measured with CL vesicles above 40 mole %. A similar dose-response binding of C1s requiring C1q, but not C1r, was detected only on CL vesicles, but neither on PG vesicles nor on immune complexes. This binding was Ca2+-dependent, suggesting that dimeric C1s is involved and was inhibited by spermine. The C1q-bound C1s was specifically cleaved at 37 degrees C into its active 58 kDa and 28 kDa chains, in the absence of C1r. On the addition of anti-CL antibodies, the C1q-mediated cleavage of C1s by CL vesicles was specifically inhibited. The cleavage of C1r on CL vesicles was also determined. When macromolecular C1 was offered in the presence of C1-INH, C1r cleavage was detected; however, the presence of C1s was a critical factor for C1r activation, because it was required on CL vesicles, but not on immune complexes. These results show that nonimmune activation of C1 presents specific features which distinguish it from immune complex-induced activation. These characteristics varied with the capacity of antibody-independent activators to activate C1 in the presence of C1-INH.  相似文献   

20.
Functional model of subcomponent C1 of human complement   总被引:2,自引:0,他引:2  
The domain organization of the zymogen subunits of the first component of human complement C1s, C1r2 and the complex C1s-C1r2-C1s was studied by electron microscopy. In the absence of Ca2+, monomeric C1s was visualized as a dumb-bell-shaped molecule consisting of two globular domains (center-to-center distance 11 nm) connected by a rod. One of the globular domains is assigned to the light chain (B-chain) of the activated molecule, which is homologous to trypsin and other serine proteases. The second globular domain and the rod are assigned to the heavy chain (A-chain) of CIs. The subunit C1r is a stable dimer in the presence or absence of Ca2+. This dimer C1r2 was visualized as composed of two dumb-bells of dimensions similar to those observed for C1s. These are connected near the junctions between the rod and one of the globular domains. This leads to the structure of an asymmetrical X with two inner closely spaced globules (center-to-center distance 7 nm) and two outer globules at a larger distance (14 nm). By comparison with fragment C1rII2, in which part of the A-chain is removed, the inner globular domains were assigned to the catalytic B-chains. This characteristic structure of C1r2 is readily recognized in the central portion of the thread-like 54 nm long C1s-C1r2-C1s complex formed in the presence of Ca2+. By affinity-labeling of C1s with biotin and visualization of avidin-ferritin conjugates in the reconstituted complex, it was demonstrated that C1s forms the outer portion of the complex. A detailed model of C1s-C1r2-C1s is proposed, according to which two C1s monomers bind to the outer globes of C1r2 by contacts between their heavy chains and those of C1r. According to this model the catalytic domains of C1r are located in the center and those of C1s at the very tips of the C1s-C1r2-C1s complex. On the basis of the structure of C1s-C1r2-C1s, we derived a detailed model of the C1 complex (composed of C1q and the tetrameric complex) and we discuss this model with a view to finding a possible activation mechanism of C1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号