首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. This novel MnII-dependent extracellular enzyme (Mr = 46,000) contains a single protoporphyrin IX prosthetic group and oxidizes phenolic lignin model compounds as well as a variety of other substrates. To elucidate the heme environment of this enzyme, we have studied its electron paramagnetic resonance and resonance Raman spectroscopic properties. These studies indicate that the native enzyme is predominantly in the high-spin ferric form and has a histidine as fifth ligand. The reduced enzyme has a high-spin, pentacoordinate ferrous heme. Fluoride and cyanide readily bind to the sixth coordination position of the heme iron in the native form, thereby changing MnP into a typical high-spin, hexacoordinate fluoro adduct or a low-spin, hexacoordinate cyano adduct, respectively. EPR spectra of 14NO- and 15NO-adducts of ferrous MnP were compared with those of horseradish peroxidase (HRP); the presence of a proximal histidine ligand was confirmed from the pattern of superhyperfine splittings of the NO signals centered at g approximately equal to 2.005. The appearance of the FeII-His stretch at approximately 240 cm-1 and its apparent lack of deuterium sensitivity suggest that the N delta proton of the proximal histidine of the enzyme is more strongly hydrogen bonded than that of oxygen carrier globins and that this imidazole ligand may be described as having a comparatively strong anionic character. Although resonance Raman frequencies for the spin- and coordination-state marker bands of native MnP, nu 3 (1487), nu 19 (1565), and nu 10 (1622 cm-1), do not fall into frequency regions expected for typical penta- or hexacoordinate high-spin ferric heme complexes, ligation of fluoride produces frequency shifts of these bands very similar to those observed for cytochrome c peroxidase and HRP. Hence, these data strongly suggest that the iron in native MnP is predominantly high-spin pentacoordinate. Analysis of the Raman frequencies indicates that the dx2-y2 orbital of the native enzyme is at higher energy than that of metmyoglobin. These features of the heme in MnP must be favorable for the peroxidase catalytic mechanism involving oxidation of the heme iron to FeIV. Consequently, it is most likely that the heme environment of MnP resembles those of HRP, cytochrome c peroxidase, and lignin peroxidase.  相似文献   

2.
3.
A lignin-degrading basidiomycete, Phanerochaete chrysosporium, produces an extracellular peroxidase which in turn produces H2O2 by catalyzing the oxidation of NADH and NADPH. The high enzyme activity was observed in the culture grown under nutrient nitrogen limitation (low-N) and high oxygen tension (high-O2). The enzyme activity was absent in non-ligninolytic agitated culture and in the cultures of non-ligninolytic mutant strains of this organism. The culture method using polyurethane foam cubes as a support for the growing mycelia showed the beneficial effect of producing a large amount of the enzyme. The enzyme is capable of catalyzing the oxidation of NADH and NADPH in the absence of added H2O2, and its activity was inhibited strongly by catalase and superoxide dismutase. It is suggested that this peroxidase participates in the ligninolytic system of Phanerochaete chrysosporium as a donor of H2O2, which is required for the lignin-peroxidase reaction, by oxidizing extracellular NADH and NADPH.  相似文献   

4.
Electrophoretic karyotyping of the two most widely studied strains of Phanerochaete chrysosporium, BKMF-1767 and ME-446, has been determined using transverse alternating field etectrophoresis. The genomic DNA of BKMF-1767 was resolved into 10 chromosomes ranging in size from 1.8–5.0 Mb, amounting to a total genome size of about 29 Mb. The genomic DNA of strain ME-446, on the other hand, was resolved into 11 chromosomes, amounting to a total genome size of about 32Mb. Lignin peroxidase genes have been localized to five chromosomes in strain BKMF-1767 and to four chromosomes in strain ME-446.  相似文献   

5.
Stopped-flow techniques were used to investigate the kinetics of the formation of manganese peroxidase compound I (MnPI) and of the reactions of MnPI and manganese peroxidase compound II (MnPII) with p-cresol and MnII. All of the rate data were obtained from single turnover experiments under pseudo-first order conditions. In the presence of H2O2 the formation of MnPI is independent of pH over the range 3.12-8.29 with a second-order rate constant of (2.0 +/- 0.1) x 10(6) M-1 s-1. The activation energy for MnPI formation is 20 kJ mol-1. MnPI formation also occurs with organic peroxides such as peracetic acid, m-chloroperoxybenzoic acid, and p-nitroperoxybenzoic acid with second-order rate constants of 9.7 x 10(5), 9.5 x 10(4), and 5.9 x 10(4) M-1 s-1, respectively. The reactions of MnPI and MnPII with p-cresol strictly obeyed second-order kinetics. The second-order rate constant for the reaction of MnPII with p-cresol is extremely low, (9.5 +/- 0.5) M-1 s-1. Kinetic analysis of the reaction of MnII with MnPI and MnPII showed a binding interaction with the oxidized enzymes which led to saturation kinetics. The first-order dissociation rate constants for the reaction of MnII with MnPI and MnPII are (0.7 +/- 0.1) and (0.14 +/- 0.01) s-1, respectively, when the reaction is conducted in lactate buffer. Rate constants are considerably lower when the reactions are conducted in succinate buffer. Single turnover experiments confirmed that MnII serves as an obligatory substrate for MnPII and that both oxidized forms of the enzyme form productive complexes with MnII. Finally, these results suggest the alpha-hydroxy acids such as lactate facilitate the dissociation of MnIII from the enzyme.  相似文献   

6.
7.
Manganese peroxidase (MnP) is one of two extracellular peroxidases believed to be involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. The enzyme oxidizes Mn(II) to Mn(III), which accumulates in the presence of Mn(III) stabilizing ligands. The Mn(III) complex in turn can oxidize a variety of organic substrates. The stoichiometry of Mn(III) complex formed per hydrogen peroxide consumed approaches 2:1 as enzyme concentration increases at a fixed concentration of peroxide or as peroxide concentration decreases at a fixed enzyme concentration. Reduced stoichiometry below 2:1 is shown to be due to Mn(III) complex decomposition by hydrogen peroxide. Reaction of Mn(III) with peroxide is catalyzed by Cu(II), which explains an apparent inhibition of MnP by Cu(II). The net decomposition of hydrogen peroxide to form molecular oxygen also appears to be the only observable reaction in buffers that do not serve as Mn(III) stabilizing ligands. The nonproductive decomposition of both Mn(III) and peroxide is an important finding with implications for proposed in vitro uses of the enzyme and for its role in lignin degradation. Steady-state kinetics of Mn(III) tartrate and Mn(III) malate formation by the enzyme are also described in this paper, with results largely corroborating earlier findings by others. Based on a comparison of pH effects on the kinetics of enzymatic Mn(III) tartrate and Mn(III) malate formation, it appears that pH effects are not due to ionizations of the Mn(III) complexing ligand.  相似文献   

8.
Tetrachloro-1,4-hydroquinone (TClHQ) is an intermediate in the degradation of pentachlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Two enzymes required for the reductive dehalogenation of TClHQ to trichlorohydroquinone (TrClHQ) were identified in cell-free extracts of P. chrysosporium. In the presence of GSH, a membrane-bound enzyme converted TClHQ to the glutathionyl conjugate of TrClHQ (GS-TrClHQ). This membrane-bound glutathione transferase was specific for GSH as a cosubstrate. In the second step of the reductive dehalogenation reaction, a soluble enzyme fraction converted GS-TrClHQ to TrClHQ in the presence of GSH, cysteine, or dithiothreitol. Thus, this second enzyme appears to be a GS-conjugate reductase. These two enzyme fractions, working in tandem, also reductively dehalogenated TrClHQ and 2,6-dichlorohydroquinone, which are intermediates in the degradation of chlorophenols by this organism.  相似文献   

9.
A Mn(II)-dependent peroxidase found in the extracellular medium of ligninolytic cultures of the white rot fungus, Phanerochaete chrysosporium, was purified by DEAE-Sepharose ion-exchange chromatography, Blue Agarose chromatography, and gel filtration on Sephadex G-100. Sodium dodecyl sulfate-gel electrophoresis indicated that the homogeneous protein has an Mr of 46,000. The absorption spectrum of the enzyme indicates the presence of a heme prosthetic group. The pyridine hemochrome absorption spectrum indicates that the enzyme contained one molecule of heme as iron protoporphyrin IX. The absorption maximum of the native enzyme (406 nm) shifted to 433 nm in the reduced enzyme and to 423 nm in the reduced-CO complex. Both CN- and N-3 readily bind to the native enzyme, indicating an available coordination site and that the heme iron is high spin. The absorption spectrum of the H2O2 enzyme complex, maximum at 420 nm, is similar to that of horseradish peroxidase compound II. P. chrysosporium peroxidase activity is dependent on Mn(II), with maximal activity attained above 100 microM. The enzyme is also stimulated to varying degrees by alpha-hydroxy acids (e.g., malic, lactic) and protein (e.g., gelatin, albumin). The peroxidase is capable of oxidizing NADH and a wide variety of dyes, including Poly B-411 and Poly R-481. Several of the substrates (indigo trisulfonate, NADH, Poly B-411, variamine blue RT salt, and Poly R-481) are oxidized by this Mn(II)-dependent peroxidase at considerably faster rates than those catalyzed by horseradish peroxidase. The enzyme rapidly oxidizes Mn(II) to Mn(III); the latter was detected by the characteristic absorption spectrum of its pyrophosphate complex. Inhibition of the oxidation of the substrate diammonium 2,2-azino-bis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) by Na-pyrophosphate suggests that Mn(III) plays a role in the enzyme mechanism.  相似文献   

10.
K Valli  H Wariishi    M H Gold 《Journal of bacteriology》1992,174(7):2131-2137
Under secondary metabolic conditions, the white-rot basidiomycete Phanerochaete chrysosporium degraded 2,7-dichlorodibenzo-p-dioxin (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell-free extracts. The multistep pathway involves the degradation of I and subsequent intermediates by oxidation, reduction, and methylation reactions to yield the key intermediate 1,2,4-trihydroxybenzene (III). In the first step, the oxidative cleavage of the dioxin ring of I, catalyzed by LiP, generates 4-chloro-1,2-benzoquinone (V), 2-hydroxy-1,4-benzoquinone (VIII), and chloride. The intermediate V is then reduced to 1-chloro-3,4-dihydroxybenzene (II), and the latter is methylated to form 1-chloro-3,4-dimethoxybenzene (VI). VI in turn is oxidized by LiP to generate chloride and 2-methoxy-1,4-benzoquinone (VII), which is reduced to 2-methoxy-1,4-dihydroxybenzene (IV). IV is oxidized by either LiP or MnP to generate 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (III). The other aromatic product generated by the initial LiP-catalyzed cleavage of I is 2-hydroxy-1,4-benzoquinone (VIII). This intermediate is also generated during the LiP- or MnP-catalyzed oxidation of the intermediate chlorocatechol (II). VIII is also reduced to 1,2,4-trihydroxybenzene (III). The key intermediate III is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial oxidative cleavage of both C-O-C bonds in I by LiP generates two quinone products, 4-chloro-1,2-benzoquinone (V) and 2-hydroxy-1,4-benzoquinone (VIII). The former is recycled by reduction and methylation reactions to generate an intermediate which is also a substrate for peroxidase-catalyzed oxidation, leading to the removal of a second chlorine atom. This unique pathway results in the removal of both aromatic chlorines before aromatic ring cleavage takes place.  相似文献   

11.
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium rapidly mineralizes 2,4,5-trichlorophenol. The pathway for degradation of 2,4,5-trichlorophenol was elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway involves cycles of peroxidase-catalyzed oxidative dechlorination reactions followed by quinone reduction reactions to yield the key intermediate 1,2,4,5-tetrahydroxybenzene, which is presumably ring cleaved. In the first step of the pathway, 2,4,5-trichlorophenol is oxidized to 2,5-dichloro-1,4-benzoquinone by either MnP or Lip. 2,5-Dichloro-1,4-benzoquinone is then reduced to 2,5-dichloro-1,4-hydroquinone. The 2,5-dichloro-1,4-hydroquinone is oxidized by MnP to generate 5-chloro-4-hydroxy-1,2-benzoquinone. The orthoquinone is in turn reduced to 5-chloro-1,2,4-trihydroxybenzene. Finally, the 5-chlorotrihydroxybenzene undergoes another cycle of oxidative dechlorination and reduction reactions to generate 1,2,4,5-tetrahydroxybenzene. The latter is presumably ring cleaved, with subsequent degradation to CO2. In this pathway, the substrate is oxidatively dechlorinated by LiP or MnP in a reaction which produces a quinone. The quinone intermediate is recycled by a reduction reaction to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This pathway apparently results in the removal of all three chlorine atoms before ring cleavage occurs.  相似文献   

12.
《Gene》1998,206(2):185-193
A cDNA (MnP13-1) and the Cs-mnp1 gene encoding for an isoenzyme of manganese peroxidase (MnP) from C. subvermispora were isolated separately and sequenced. The cDNA, identified in a library constructed in the vector Lambda ZIPLOX, contains 1285 nucleotides, excluding the poly(A) tail, and has a 63% G+C content. The deduced protein sequence shows a high degree of identity with MnPs from other fungi. The mature protein contains 364 amino acids, which are preceded by a 24-amino-acid leader sequence. Consistent with the peroxidase mechanism of MnP, the proximal histidine, the distal histidine and the distal arginine are conserved, although the aromatic binding site (L/V/I–P–X–P) is less hydrophilic than those of other peroxidases. A gene coding for the same protein (Cs-mnp1) was isolated from a genomic library constructed in Lambda GEM-11 vector using the cDNA MnP13-1 as a probe. A subcloned SacI fragment of 2.5 kb contained the complete sequence of the Cs-mnp1 gene, including 162 bp and 770 bp of the upstream and downstream regions, respectively. The Cs-mnp1 gene possesses seven short intervening sequences. The intron splice junction sequences as well as the putative internal lariat formation sites adhere to the GT–AG and CTRAY rules, respectively. To examine the structure of the regulatory region of the Cs-mnp1 gene further, a fragment of 1.9 kb was amplified using inverse PCR. A putative TATAA element was identified 5′ of the translational start codon. Also, an inverted CCAAT element, SP-1 and AP-2 sites and several putative heat-shock and metal response elements were identified.  相似文献   

13.
T Randall  C A Reddy 《Gene》1991,103(1):125-130
In this study, a lignin peroxidase-encoding gene (LIP) of Phanerochaete chrysosporium was disrupted by inserting into its coding region the kanamycin-resistance determinant from Tn903. The resulting recombinant plasmid, pUGLG1: kan, was transformed into P. chrysosporium with the expectation that the disrupted gene might replace the homologous LIP gene in the chromosome. However, the results showed that pUGLG1: kan sequences do not integrate into the chromosome; instead, the plasmid is maintained intact in the transformants in an extrachromosomal state. Our data also show that pUGLG1: kan undergoes replication in P. chrysosporium, is maintained as a circular element, is recoverable from meiotic and mitotic progeny, although at a low frequency, and can be recovered intact by Escherichia coli transformation. These results suggest that the GLG1 component of pUGLG1: kan contains as yet unidentified sequences that allow its autonomous replication in P. chrysosporium transformants.  相似文献   

14.
15.
A stable extrachromosomally maintained transformation vector (pG12-1) for the lignin-degrading filamentous fungus Phanerochaete chrysosporium is described. The vector is 6.3 kb and contains a Kanr marker, pBR322 ori, and a 2.2-kb fragment (ME-1) derived from an endogenous extrachromosomal DNA element of P. chrysosporium. Vector pG12-1 was able to transform P. chrysosporium to G418 resistance and was readily and consistently recoverable from the total DNA of transformants via Escherichia coli transformation. Southern blot analyses indicated that pG12-1 is maintained at a low copy number in the fungal transformants. The vector is demonstrable in the total DNA of individual G418-resistant basidiospore progeny of the transformants only after amplification by polymerase chain reaction. Exonuclease III and dam methylation analyses, respectively, indicated that pG12-I undergoes replication in P. chrysosporium and that it is maintained extrachromosomally in a circular form. The vector is stably maintained in the transformants even after long-term nonselective growth. There is no evidence for integration of the vector into the chromosome at any stage.  相似文献   

16.
17.
Two cDNA clones encoding lignin peroxidase isozymes from Phanerochaete chrysosporium have been isolated and characterized. One of the clones, lambda ML-4, encodes isozyme H8 as does the previously reported clone lambda ML-1 [Tien, M. and Tu, C.-P.D. Nature 326 (1987) 520-523; 328, 742]. Our data are consistent with lambda ML-1 and lambda ML-4 being allelic variants. The other clone, lambda ML-5, encodes a homologous isozyme. We have also isolated the genomic clone corresponding to lambda ML-4 cDNA. Conserved residues thought to be essential for peroxidase function were identified in the predicted amino acid sequences of both cDNA clones. Northern blot analyses indicate that these isozymes are expressed during secondary metabolism, appearing on day 4 of growth and increasing on days 5 and 6.  相似文献   

18.
19.
20.
Pleurotus ostreatus No. 42 produced the ligninolytic enzymes, manganese peroxidase (MnP) and laccase, in agitation culture in glucose/peptone/wheat-bran medium. Formation of mycelial pellets 1-2 mm in diameter was essential for the production of MnP; and the concentration of dissolved oxygen in the culture medium greatly influenced the production of MnP, a concentration over 5 ppm being necessary for MnP production. The maximal activity of MnP was obtained on days 7-9 of culture, after the consumption of nutrient glucose. Introduction of oxygen from the start of the cultivation caused large pellet formation, which resulted in a low MnP activity level. P. ostreatus No. 42 produced two MnP isozymes in agitation culture. The major isozyme, F-2, was 36.4 kDa and had a pI of 3.95. The MnP characteristics, Km values, dependence on Mn2+ and optimum pH showed the similarity between this isozyme and MnP 3, which was produced under different culture conditions. Analysis of the N-terminal amino acid sequence indicated the close similarity of F-2 to MnP 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号