首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Monitoring of thiopurine metabolites 6-thioguanine nucleotides (6-TGN) and 6-methylmercaptopurine (6-MMP) is used to assess compliance and explain adverse reactions in IBD-patients. Correlations between dosage, metabolite concentrations and therapeutic efficacy or toxicity are contradictive. Research is complicated by analytical problems as matrices analyzed and analytical procedures vary widely. Moreover, stability of thiopurine metabolites is not well documented, yet pivotal for interpretation of analytical outcomes. Therefore, we prospectively investigated metabolite stability in blood samples under standard storage conditions.

Methods

Stability at room temperature and refrigeration (22 °C, 4 °C) was investigated during 1 week and frozen samples (−20 °C, −80 °C) were analyzed during 6 months storage. Ten patient samples were analyzed for each study period.

Results

Median 6-TGN concentrations on day 7 decreased significantly to 53% and 90% during storage at ambient temperature or refrigeration. Median 6-MMP concentrations on day 7 decreased significantly to 55% and 86%, respectively. Samples stored at −20 °C also showed significant decreases in both 6-TGN and 6-MMP in comparison with baseline values. At −80 °C, only 6-MMP showed a significant decrease in values compared to baseline.

Conclusion

The stability of thiopurine metabolites is clearly a limiting factor in studies investigating utilisation of TDM and correlations with therapeutic outcome in IBD-patients. This has to be accounted for in clinical practice and (multi-center) trials investigating thiopurine drugs.  相似文献   

2.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosynthetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose-6-phosphate and linear glucosamine-6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.  相似文献   

3.
Low concentrations of HgCl2 elicited, in Saccharomyces cerevisiae, a transitory increase in the ATP level followed by a decrease of its concentration, until almost disappearance. At 1 microM HgCl2, the increase in ATP lasted for about 30 min, while at 10 microM the increase was only observed in the first 5 min of treatment. The initial burst of ATP was accompanied by a decrease in the level of hexose phosphates, whereas during the decrease of ATP an increase in the inosine and hexose phosphates levels took place. The treatment with HgCl2 inhibited the plasma membrane proton ATPase but not the activities of hexokinase or 6-phosphofructokinase.  相似文献   

4.
The glmS ribozyme is a catalytic RNA that self-cleaves at its 5'-end in the presence of glucosamine 6-phosphate (GlcN6P). We present structures of the glmS ribozyme from Thermoanaerobacter tengcongensis that are bound with the cofactor GlcN6P or the inhibitor glucose 6-phosphate (Glc6P) at 1.7 A and 2.2 A resolution, respectively. The two structures are indistinguishable in the conformations of the small molecules and of the RNA. GlcN6P binding becomes apparent crystallographically when the pH is raised to 8.5, where the ribozyme conformation is identical with that observed previously at pH 5.5. A key structural feature of this ribozyme is a short duplex (P2.2) that is formed between sequences just 3' of the cleavage site and within the core domain, and which introduces a pseudoknot into the active site. Mutagenesis indicates that P2.2 is required for activity in cis-acting and trans-acting forms of the ribozyme. P2.2 formation in a trans-acting ribozyme was exploited to demonstrate that N1 of the guanine at position 1 contributes to GlcN6P binding by interacting with the phosphate of the cofactor. At neutral pH, RNAs with adenine, 2-aminopurine, dimethyladenine or purine substitutions at position 1 cleave faster with glucosamine than with GlcN6P. This altered cofactor preference provides biochemical support for the orientation of the cofactor within the active site. Our results establish two features of the glmS ribozyme that are important for its activity: a sequence within the core domain that selects and positions the cleavage-site sequence, and a nucleobase at position 1 that helps position GlcN6P.  相似文献   

5.
Glucosamine-6-phosphate synthase (GlmS) channels ammonia from glutamine at the glutaminase site to fructose 6-phosphate (Fru6P) at the synthase site. Escherichia coli GlmS is composed of two C-terminal synthase domains that form the dimer interface and two N-terminal glutaminase domains at its periphery. We report the crystal structures of GlmS alone and in complex with the glucosamine-6-phosphate product at 2.95 Å and 2.9 Å resolution, respectively. Surprisingly, although the whole protein is present in this crystal form, no electron density for the glutaminase domain was observed, indicating its mobility. Comparison of the two structures with that of the previously reported GlmS-Fru6P complex shows that, upon sugar binding, the C-terminal loop, which forms the major part of the channel walls, becomes ordered and covers the synthase site. The ordering of the glutaminase domains likely follows Fru6P binding by the anchoring of Trp74, which acts as the gate of the channel, on the closed C-terminal loop. This is accompanied by a major conformational change of the side chain of Lys503# of the neighboring synthase domain that strengthens the interactions of the synthase domain with the C-terminal loop and completely shields the synthase site. The concomitant conformational change of the Lys503#-Gly505# tripeptide places catalytic His504# in the proper position to open the sugar and buries the linear sugar, which is now in the vicinity of the catalytic groups involved in the sugar isomerization reaction. Together with the previously reported structures of GlmS in complex with Fru6P or glucose 6-phosphate and a glutamine analogue, the new structures reveal the structural changes occurring during the whole catalytic cycle.  相似文献   

6.
This article reports on experimental evidence that an Escherichia coli nanR mutant shows inhibited growth in N-acetylneuraminic acid. This effect is prevented when inocula are grown in an excess of glucose, but not in an excess of glycerol. The nanATEK operon is controlled by catabolite repression, suggesting that diminished expression of the nanATEK operon in the presence of glucose explains the inocula effects. Neither double nanR-nagC nor nanR dam mutants show growth inhibition in the presence of N-acetylneuraminic acid. A theoretical model of N-acetylneuraminic acid metabolism (i.e., in particular of the nanATEK and nagBACD operons) is presented; the model suggests an interpretation of this effect as being due to transient high accumulations of GlcNAc-6P in the cell. This accumulation would lead to suppression of central metabolic functions of the cell, thus causing inhibited growth. Based on the theoretical model and experimental data, it is hypothesised that the nanATEK operon is induced in a two-step mechanism. The first step is likely to be repressor displacement by N-acetylneuraminic acid. The second stage is hypothesised to involve Dam methylation to achieve full induction.  相似文献   

7.
Purified trehalose-6-phosphate synthase (TPS) of Saccharomyces cerevisiae was effective over a wide range of substrates, although differing with regard to their relative activity. Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity, particularly when a pyrimidine glucose nucleotide like UDPG was used, rather than a purine glucose nucleotide like GDPG. A high Vmax and a low Km value of UDPG show its greater affinity with TPS than GDPG or TDPG. Among the glucosyl acceptors TPS showed maximum activity with G-6-P which was followed by M-6-P and F-6-P. Effect of heparin was also extended to the purification of TPS activity, as it helped to retain both stability and activity of the final purified enzyme. Metal co-factors, specifically MnCl2 and ZnCl2 acted as stimulators, while enzyme inhibitors had very little effect on TPS activity. Metal chelators like CDTA, EGTA stimulated enzyme activity by chelation of metal inhibitors. Temperature and pH optima of the purified enzyme were determined to be 40 °C and pH 8.5 respectively. Enzyme activity was stable at 0–40 °C and at alkaline pH.  相似文献   

8.
The mechanisms of action of 9-(tetrahydro-2-furyl)-6-mercaptopurine (THFMP) have been studied in Chinese hamster ovary (CHO) cells in tissue culture. THFMP is relatively unstable in physiological buffers, being facilely converted to 6-mercaptopurine (6-MP) even in the absence of cells. Consequently, THFMP undergoes metabolic conversions characteristic of 6-MP, namely formation of 6-thioIMP and incorporation into DNA as 6-thioguanine (6-TG) nucleotide. A number of purines are capable of preventing the toxicity of THFMP in wild-type cells in a manner similar to that of 6-MP. However, exogenous purines and pyrimidines did not prevent the toxicity of THFMP to cells deficient in the enzyme, hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8; HGPRTase). Cells lacking HGPRTase were 20–40-fold resistant to 6-TG and 6-MP but were only 2–4-fold resistant to THFMP. Furthermore, the time-course for killing CHO cells deficient in HGPRTase was different from that in wild-type cells containing the enzyme. There was no apparent effect of THFMP on the utilization of precursors for DNA, RNA or protein synthesis in the enzyme-deficient mutant cell line. The results suggest that THFMP is converted non-enzymatically to 6-MP and shares its mechanisms of action in wild-type cells containing HGPRTase, i.e., inhibition of de novo purine biosynthesis and incorporation into DNA as 6-TG nucleotide. However, the mechanism of action of THFMP in cells lacking HGPRTase is probably unique and is presently unknown.  相似文献   

9.
The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~ 24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation. The switch from KaiC phosphorylation to dephosphorylation is initiated by the formation of the KaiB–KaiC complex, which occurs upon phosphorylation of the S431 residues of KaiC. We show here that formation of the KaiB–KaiC complex is promoted by KaiA, suggesting cooperativity in the initiation of the dephosphorylation complex. In the KaiA–KaiB interaction, one monomeric subunit of KaiB likely binds to one face of a KaiA dimer, leaving the other face unoccupied. We also show that the A-loops of KaiC exist in a dynamic equilibrium between KaiA-accessible exposed and KaiA-inaccessible buried positions. Phosphorylation at the S431 residues of KaiC shift the A-loops toward the buried position, thereby weakening the KaiA–KaiC interaction, which is expected to be an additional mechanism promoting formation of the KaiABC complex. We also show that KaiB and the clock-output protein SasA compete for overlapping binding sites, which include the B-loops on the CI ring of KaiC. KaiA strongly shifts the competition in KaiB's favor. Thus, in addition to stimulating KaiC phosphorylation, it is likely that KaiA plays roles in switching KaiC from phosphorylation to dephosphorylation, as well as regulating clock output.  相似文献   

10.

Background

Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP).

Methods

In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100 mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC).

Results

An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37 °C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl2, MgCl2 and ZnSO4, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest Vmax and lowest Km values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors.

General significance

Substrate specificity, Vmax and Km values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis.  相似文献   

11.
The kinetics of the enzymatic synthesis of benzylpenicillin catalysed by penicillin amidase (EC 3.5.1.11) from Escherichia coli have been studied. Both free phenylacetic acid (PAA) and its activated derivative, phenylacetylglycine (PAG), were used in the synthesis as acylating agents for 6-aminopenicillanic acid (6-APA). The catalytic rate constants for synthesis carried out at pH 6.0 were 11.2 and 25.2 s−1, respectively, i.e. they are close and have high absolute values. The main feature of the enzymatic synthesis of benzylpenicillin from phenylacetylglycine, compared with the synthesis from phenylacetic acid, is the shape of the progress curve of antibiotic accumulation. In the former case, benzylpenicillin gradually accumulates until equilibrium is reached. Thus, if the reaction is carried out at the thermodynamically optimum pH of synthesis (low pH), penicillin can be obtained in high yield. In the case of phenylacetylglycine, the kinetic curves are more complex and are characterized by a clear-cut maximum. The presence of the maximum, its value and position on the time axis depend on reagent concentration and on the pH used. A kinetic scheme is proposed which describes well the experimental dependencies. The possibility of using activated acid derivatives in synthesis and the advantages of using computer calculations for process optimization are discussed.  相似文献   

12.
Redox state of pyridine nucleotides of the endoplasmic reticulum (ER) lumen was determined in different nutritional conditions. NADPH-dependent cortisone reduction and NADP+-dependent cortisol oxidation were measured in rat liver microsomes, by utilizing the luminal 11β-hydroxysteroid dehydrogenase type 1 activity. Cortisone reduction decreased, while cortisol oxidation increased during onward starvation, showing that the luminal NADPH/NADP+ ratio was substantially decreased. Cortisone or metyrapone addition caused a smaller decrease in NADPH fluorescence in microsomes from starved rats. The results demonstrate that nutrient supply is mirrored by the redox state of ER luminal pyridine nucleotides.  相似文献   

13.
Histone deacetylase 6 (HDAC6) controls acetylation of a number of cytosolic proteins, most prominently tubulin. Tubacin is a small molecule inhibitor of HDAC6 selected for its selective inhibition of HDAC6 relative to other histone deacetylases. For this reason it has become a useful pharmacological tool to discern the biological functions of HDAC6 in numerous cellular processes. The interest of this laboratory is in the function and regulation of sphingolipids, a family of lipids based on the sphingosine backbone. Sphingolipid biosynthesis is initiated by the rate limiting enzyme serine palmitoyltransferase (SPT). Sphingolipids have critical and diverse functions in cell survival, apoptosis, intra- and intercellular signaling, and in membrane structure. In the course of examining the role of HDAC6 in the regulation of sphingolipid biosynthesis we observed that tubacin strongly inhibited de novo synthesis whereas HDAC6 knockdown very moderately stimulated synthesis. We resolved these seemingly contradictory results by demonstrating that, surprisingly, tubacin is a direct inhibitor of SPT activity in permeabilized cells. Furthermore tubacin inhibits de novo sphingolipid synthesis in intact cells at doses commonly used to test HDAC6 function and does so in an HDAC6-independent manner. Niltubacin is a chemical analog of tubacin which lacks tubacin’s HDAC6 activity, and so is often used as a control for off-target effects of tubacin. We find that niltubacin is inactive in the inhibition of sphingolipid biosynthesis, and so does not serve to distinguish the inhibitory effects of tubacin on HDAC6 from those on sphingolipid biosynthesis. These results indicate that caution should be used in the use of tubacin to study the role of HDAC6.  相似文献   

14.
15.
Effect of 5-100 microM epigallocatechin gallate (EGCG) on hepatic glucose 6-phosphatase (G6Pase) system was investigated. EGCG inhibited G6Pase in intact but not in permeabilized rat liver microsomes, suggesting the interference with the transport. However, EGCG did not hinder microsomal glucose 6-phosphate (G6P) uptake. Instead, it increased the accumulation of radioactivity after the addition of [(14)C]G6P, presumably due to a slower release of [(14)C]glucose, the product of luminal hydrolysis. Indeed, EGCG was found to inhibit microsomal glucose efflux. Since G6Pase activity is depressed by glucose in a concentration-dependent manner, we concluded that EGCG inhibits G6Pase through an elevated luminal glucose level.  相似文献   

16.
17.
18.
19.
Recent studies have found methyl-6-adenosine in thousands of mammalian genes, and this modification is most pronounced near the beginning of the 3' UTR. We present a perspective on current work and new single-molecule sequencing methods for detecting RNA base modifications.  相似文献   

20.
Adult F. hepatica were obtained from sheep which had received a single dose of rafoxanide at the therapeutic dose rate (7·5 mg/kg body weight). Flukes were recovered 12 and 24 h after the sheep were treated. No flukes were present after 4 days. Plasma levels of the drug were high after 24 h and remained so at 4 days. Flukes were being expelled from the liver 24 h after treatment. Glycogen levels within the flukes were diminished in the 24 h treated group, as were concentrations of ATP. These effects were not apparent in the 12 h treated group. Fluctuations in glucose, G6P, F6P and pyruvate pools were observed in both groups. The effects of rafoxanide were irreversible after 24 h exposure to the drug. Flukes from the treated sheep were incubated for 6 and 24 h in a simple maintenance medium with added glucose. They showed progressive deterioration in energy status. The results are considered in the context of the mode of action of rafoxanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号