首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The AAA peroxins, Pex1p and Pex6p, are components of the peroxisomal protein import machinery required for the relocation of the import receptor Pex5p from the peroxisomal membrane to the cytosol. We demonstrate that Pex1p and Pex6p form a stable complex in the cytosol, which associates at the peroxisomal membrane with their membrane anchor Pex15p and the peroxisomal importomer. The interconnection of Pex15p with the components of the importomer was independent of Pex1p and Pex6p, indicating that Pex15p is an incorporated component of the assembly. Further evidence suggests that the AAA peroxins shuttle between cytosol and peroxisome with proper binding of the Pex15p-AAA complex to the importomer and release of the AAA peroxins from the peroxisomal membrane depending on an operative peroxisomal protein import mechanism. Pex4p-deficient cells exhibit a wild-type-like assembly of the importomer, which differs in that it is associated with increased amounts of Pex1p and Pex6p, in agreement with a function for Pex4p in the release of AAA peroxins from the peroxisomal membrane.  相似文献   

2.
Peroxisomes are independent organelles found in virtually all eukaryotic cells. Genetic studies have identified more than 20 PEX genes that are required for peroxisome biogenesis. The role of most PEX gene products, peroxins, remains to be determined, but a variety of studies have established that Pex5p binds the type 1 peroxisomal targeting signal and is the import receptor for most newly synthesized peroxisomal matrix proteins. The steady-state abundance of Pex5p is unaffected in most pex mutants of the yeast Pichia pastoris but is severely reduced in pex4 and pex22 mutants and moderately reduced in pex1 and pex6 mutants. We used these subphenotypes to determine the epistatic relationships among several groups of pex mutants. Our results demonstrate that Pex4p acts after the peroxisome membrane synthesis factor Pex3p, the Pex5p docking factors Pex13p and Pex14p, the matrix protein import factors Pex8p, Pex10p, and Pex12p, and two other peroxins, Pex2p and Pex17p. Pex22p and the interacting AAA ATPases Pex1p and Pex6p were also found to act after Pex10p. Furthermore, Pex1p and Pex6p were found to act upstream of Pex4p and Pex22p. These results suggest that Pex1p, Pex4p, Pex6p, and Pex22p act late in peroxisomal matrix protein import, after matrix protein translocation. This hypothesis is supported by the phenotypes of the corresponding mutant strains. As has been shown previously for P. pastoris pex1, pex6, and pex22 mutant cells, we show here that pex4Delta mutant cells contain peroxisomal membrane protein-containing peroxisomes that import residual amounts of peroxisomal matrix proteins.  相似文献   

3.
The importomer complex plays an essential role in the biogenesis of peroxisomes by mediating the translocation of matrix proteins across the organellar membrane. A central part of this highly dynamic import machinery is the docking complex consisting of Pex14p, Pex13p, and Pex17p that is linked to the RING finger complex (Pex2p, Pex10p, Pex12p) via Pex8p. To gain detailed knowledge on the molecular players governing peroxisomal matrix protein import and, thus, the integrity and functionality of peroxisomes, we aimed at a most comprehensive investigation of stable and transient interaction partners of Pex14p, the central component of the importomer. To this end, we performed a thorough quantitative proteomics study based on epitope tagging of Pex14p combined with dual-track stable isotope labeling with amino acids in cell culture-mass spectrometry (SILAC-MS) analysis of affinity-purified Pex14p complexes and statistics. The results led to the establishment of the so far most extensive Pex14p interactome, comprising 9 core and further 12 transient components. We confirmed virtually all known Pex14p interaction partners including the core constituents of the importomer as well as Pex5p, Pex11p, Pex15p, and Dyn2p. More importantly, we identified new transient interaction partners (Pex25p, Hrr25p, Esl2p, prohibitin) that provide a valuable resource for future investigations on the functionality, dynamics, and regulation of the peroxisomal importomer.  相似文献   

4.
The Saccharomyces cerevisiae pex17-1 mutant was isolated from a screen to identify mutants defective in peroxisome biogenesis. pex17-1 and pex17 null mutants fail to import matrix proteins into peroxisomes via both PTS1- and PTS2-dependent pathways. The PEX17 gene (formerly PAS9; Albertini, M., P. Rehling, R. Erdmann, W. Girzalsky, J.A.K.W. Kiel, M. Veenhuis, and W.-H Kunau. 1997. Cell. 89:83–92) encodes a polypeptide of 199 amino acids with one predicted membrane spanning region and two putative coiled-coil structures. However, localization studies demonstrate that Pex17p is a peripheral membrane protein located at the surface of peroxisomes. Particulate structures containing the peroxisomal integral membrane proteins Pex3p and Pex11p are evident in pex17 mutant cells, indicating the existence of peroxisomal remnants (“ghosts”). This finding suggests that pex17 null mutant cells are not impaired in peroxisomal membrane biogenesis. Two-hybrid studies showed that Pex17p directly binds to Pex14p, the recently proposed point of convergence for the two peroxisomal targeting signal (PTS)-dependent import pathways, and indirectly to Pex5p, the PTS1 receptor. The latter interaction requires Pex14p, indicating the potential of these three peroxins to form a trimeric complex. This conclusion is supported by immunoprecipitation experiments showing that Pex14p and Pex17p coprecipitate with both PTS receptors in the absence of Pex13p. From these and other studies we conclude that Pex17p, in addition to Pex13p and Pex14p, is the third identified component of the peroxisomal translocation machinery.  相似文献   

5.
In contrast to the molecular mechanisms underlying import of peroxisomal matrix proteins, those involving the transport of membrane proteins remain rather elusive. At present, two targeting routes for peroxisomal membrane proteins (PMPs) have been depicted: class I PMPs are targeted from the cytoplasm directly to the peroxisome membrane, and class II PMPs are sorted indirectly to peroxisomes via the endoplasmic reticulum (ER). In addition, three peroxins--Pex3p, Pex16p, and Pex19p - have been identified as essential factors for PMP assembly in several species including humans: Pex19p is a predominantly cytoplasmic protein that shows a broad PMP-binding specificity; Pex3p serves as the membrane-anchoring site for Pex19p; and Pex16p - a protein absent in most yeasts--is thought to provide the initial scaffold for recruiting the protein import machinery required for peroxisome membrane biogenesis. Remarkably, the function of Pex16p does not appear to be conserved between different species. In addition, significant disagreement exists about whether Pex19p has a chaperone-like role in the cytosol or at the peroxisome membrane and/or functions as a cycling import receptor for newly synthesized PMPs. Here we review the recent progress made in our understanding of the role of two key players in PMP biogenesis, Pex3p and Pex19p.  相似文献   

6.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.  相似文献   

7.
Peroxisomes are thought to be formed by division of pre-existing peroxisomes after the import of newly synthesized proteins. However, it has been recently suggested that the endoplasmic reticulum (ER) provides an alternative de novo mechanism for peroxisome biogenesis in some cells. To test a possible role of the ER-Golgi transit in peroxisome biogenesis in mammalian cells, we evaluated the biogenesis of three peroxisomal membrane proteins (PMPs): ALDRP (adrenoleukodystrophy related protein), PMP70 and Pex3p in CHO cells. We constructed chimeric genes encoding these PMPs and green fluorescent protein (GFP), and transiently transfected them to wild type and mutant CHO cells, in which normal peroxisomes were replaced by peroxisomal membrane ghosts. The expressed proteins were targeted to peroxisomes and peroxisomal ghosts correctly in the presence or absence of Brefeldin A (BFA), a drug known to block the ER-Golgi transit. Furthermore, low temperature did not disturb the targeting of Pex3p-GFP to peroxisomes. We also constructed two chimeric proteins of PMPs containing an ER retention signal "DEKKMP": GFP-ALDRP-DEKKMP and myc- Pex3p-DEKKMP. These proteins were mostly targeted to peroxisomes. No colocalization with an ER maker was found. These results suggest that the classical ER-Golgi pathway does not play a major role in the biogenesis of mammalian PMPs.  相似文献   

8.
Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16 degrees C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16 degrees C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.  相似文献   

9.
We have cloned the Hansenula polymorpha PEX14 gene by functional complementation of the chemically induced pex14-1 mutant, which lacked normal peroxisomes. The sequence of the PEX14 gene predicts a novel protein product (Pex14p) of 39 kDa which showed no similarity to any known protein and lacked either of the two known peroxisomal targeting signals. Biochemical and electron microscopical analysis indicated that Pex14p is a component of the peroxisomal membrane. The synthesis of Pex14p is induced by peroxisome-inducing growth conditions. In cells of both pex14-1 and a PEX14 disruption mutant, peroxisomal membrane remnants were evident; these contained the H.polymorpha peroxisomal membrane protein Pex3p together with a small amount of the major peroxisomal matrix proteins alcohol oxidase, catalase and dihydroxyacetone synthase, the bulk of which resided in the cytosol. Unexpectedly, overproduction of Pex14p in wild-type H. polymorpha cells resulted in a peroxisome-deficient phenotype typified by the presence of numerous small vesicles which lacked matrix proteins; these were localized in the cytosol. Apparently, the stoichiometry of Pex14p relative to one or more other components of the peroxisome biogenesis machinery appears to be critical for protein import.  相似文献   

10.
Among peroxins involved in peroxisome biogenesis, only Pex8p is predominantly intraperoxisomal at steady state. Pex8p is necessary for peroxisomal matrix protein import via the PTS1 and PTS2 pathways. It is proposed to bridge two peroxisomal membrane subcomplexes comprised of the docking (Pex13p, Pex14p, Pex17p) and RING (Pex2p, Pex10p, Pex12p) peroxins and is also implicated in cargo release of PTS1 proteins in the matrix. We show that Pichia pastoris Pex8p (PpPex8p) enters the peroxisome matrix using two redundant pathways in a Pex14p-dependent, but Pex2p-independent, manner, showing that the intact importomer and RING subcomplex are not required for its import. One pathway depends on the TPR motifs in Pex5p, the C-terminal PTS1 sequence (AKL) in PpPex8p, and the intraperoxisomal presence of this peroxin. The alternative pathway uses the PTS2 receptor, Pex7p, its accessory protein, Pex20p, and a putative PTS2 motif in PpPex8p, but does not require intraperoxisomal PpPex8p. Pex20p interaction with PpPex8p is independent of Pex7p, but the interaction of PpPex8p with Pex7p requires Pex20p. These data suggest a direct interaction between PpPex8p and Pex20p. Our studies shed light on the mechanism and evolution of the dual import pathways for PpPex8p.  相似文献   

11.
《The Journal of cell biology》1996,135(6):1763-1774
PEX5 encodes the type-1 peroxisomal targeting signal (PTS1) receptor, one of at least 15 peroxins required for peroxisome biogenesis. Pex5p has a bimodal distribution within the cell, mostly cytosolic with a small amount bound to peroxisomes. This distribution indicates that Pex5p may function as a cycling receptor, a mode of action likely to require interaction with additional peroxins. Loss of peroxins required for protein translocation into the peroxisome (PEX2 or PEX12) resulted in accumulation of Pex5p at docking sites on the peroxisome surface. Pex5p also accumulated on peroxisomes in normal cells under conditions which inhibit protein translocation into peroxisomes (low temperature or ATP depletion), returned to the cytoplasm when translocation was restored, and reaccumulated on peroxisomes when translocation was again inhibited. Translocation inhibiting conditions did not result in Pex5p redistribution in cells that lack detectable peroxisomes. Thus, it appears that Pex5p can cycle repeatedly between the cytoplasm and peroxisome. Altered activity of the peroxin defective in CG7 cells leads to accumulation of Pex5p within the peroxisome, indicating that Pex5p may actually enter the peroxisome lumen at one point in its cycle. In addition, we found that the PTS1 receptor was extremely unstable in the peroxin-deficient CG1, CG4, and CG8 cells. Altered distribution or stability of the PTS1 receptor in all cells with a defect in PTS1 protein import implies that the genes mutated in these cell lines encode proteins with a direct role in peroxisomal protein import.  相似文献   

12.
In peroxisome formation, models of near‐autonomous peroxisome biogenesis with membrane protein integration directly from the cytosol into the peroxisomal membrane are in direct conflict with models whereby peroxisomes bud from the endoplasmic reticulum and receive their membrane proteins through a branch of the secretory pathway. We therefore reinvestigated the role of the Sec 61 complex, the protein‐conducting channel of the endoplasmic reticulum (ER) in peroxisome formation. We found that depletion or partial inactivation of Sec 61 in yeast disables peroxisome formation. The ER entry of the early peroxisomal membrane protein Pex 3 engineered with a glycosylation tag is reduced in sec61 mutant cells. Moreover, we were able to reconstitute Pex 3 import into ER membranes in vitro, and we identified a variant of a signal anchor sequence for ER translocation at the Pex 3 N‐terminus. Our findings are consistent with a Sec 61 requirement for peroxisome formation and a fundamental role of the ER in peroxisome biogenesis.  相似文献   

13.
During de novo peroxisome biogenesis, importomer complex proteins sort via two preperoxisomal vesicles (ppVs). However, the sorting mechanisms segregating peroxisomal membrane proteins to the preperoxisomal endoplasmic reticulum (pER) and into ppVs are unknown. We report novel roles for Pex3 and Pex19 in intra–endoplasmic reticulum (ER) sorting and budding of the RING-domain peroxins (Pex2, Pex10, and Pex12). Pex19 bridged the interaction at the ER between Pex3 and RING-domain proteins, resulting in a ternary complex that was critical for the intra-ER sorting and subsequent budding of the RING-domain peroxins. Although the docking subcomplex proteins (Pex13, Pex14, and Pex17) also required Pex19 for budding from the ER, they sorted to the pER independently of Pex3 and Pex19 and were spatially segregated from the RING-domain proteins. We also discovered a unique role for Pex3 in sorting Pex10 and Pex12, but with the docking subcomplex. Our study describes an intra-ER sorting process that regulates segregation, packaging, and budding of peroxisomal importomer subcomplexes, thereby preventing their premature assembly at the ER.  相似文献   

14.
Pex5p is a mobile receptor for peroxisomal targeting signal type I-containing proteins that cycles between the cytoplasm and the peroxisome. Here we show that Pex5p is a stable protein that is monoubiquitinated in wild type cells. By making use of mutants defective in vacuolar or proteasomal degradation we demonstrate that monoubiquitinated Pex5p is not a breakdown intermediate of either system. Monoubiquitinated Pex5p is localized to peroxisomes, and ubiquitination requires the presence of functional docking and RING finger complexes, which suggests that it is a late event in peroxisomal matrix protein import. In pex1, pex4, pex6, pex15, and pex22 mutants, all of which are blocked in the terminal steps of peroxisomal matrix protein import, polyubiquitinated forms of Pex5p accumulate, ubiquitination being dependent on the ubiquitin-conjugating enzyme Ubc4p. However, Ubc4p is not required for Pex5p ubiquitination in wild type cells, and cells lacking Ubc4p are not affected in peroxisome biogenesis. These results indicate that Pex5p monoubiquitination in wild type cells serves to regulate rather than to degrade Pex5p, which is supported by the observed stability of Pex5p. We propose that Pex5p monoubiquitination in wild type cells is required for the recycling of Pex5p from the peroxisome, whereas Ubc4p-mediated polyubiquitination of Pex5p in mutants blocked in the terminal steps of peroxisomal matrix protein import may function as a disposal mechanism for Pex5p when it gets stuck in the import pathway.  相似文献   

15.
PEX genes encode proteins (peroxins) that are required for the biogenesis of peroxisomes. One of these peroxins, Pex5p, is the receptor for matrix proteins with a type 1 peroxisomal targeting signal (PTS1), which shuttles newly synthesized proteins from the cytosol into the peroxisome matrix. We observed that in various Saccharomyces cerevisiae pex mutants disturbed in the early stages of PTS1 import, the steady-state levels of Pex5p are enhanced relative to wild type controls. Furthermore, we identified ubiquitinated forms of Pex5p in deletion mutants of those PEX genes that have been implicated in recycling of Pex5p from the peroxisomal membrane into the cytosol. Pex5p ubiquitination required the presence of the ubiquitin-conjugating enzyme Ubc4p and the peroxins that are required during early stages of PTS1 protein import. Finally, we provide evidence that the proteasome is involved in the turnover of Pex5p in wild type yeast cells, a process that requires Ubc4p and occurs at the peroxisomal membrane. Our data suggest that during receptor recycling a portion of Pex5p becomes ubiquitinated and degraded by the proteasome. We propose that this process represents a conserved quality control mechanism in peroxisome biogenesis.  相似文献   

16.
Pex14p is a central component of the peroxisomal protein import machinery, which has been suggested to provide the point of convergence for PTS1- and PTS2-dependent protein import in yeast cells. Here we describe the identification of a human peroxisome-associated protein (HsPex14p) which shows significant similarity to the yeast Pex14p. HsPex14p is a carbonate-resistant peroxisomal membrane protein with its C terminus exposed to the cytosol. The N terminus of the protein is not accessible to exogenously added antibodies or protease and thus might protrude into the peroxisomal lumen. HsPex14p overexpression leads to the decoration of tubular structures and mislocalization of peroxisomal catalase to the cytosol. HsPex14p binds the cytosolic receptor for the peroxisomal targeting signal 1 (PTS1), a result consistent with a function as a membrane receptor in peroxisomal protein import. Homo-oligomerization of HsPex14p or interaction of the protein with the PTS2-receptor or HsPex13p was not observed. This distinguishes the human Pex14p from its counterpart in yeast cells and thus supports recent data suggesting that not all aspects of peroxisomal protein import are conserved between yeasts and humans. The role of HsPex14p in mammalian peroxisome biogenesis makes HsPEX14 a candidate PBD gene for being responsible for an unrecognized complementation group of human peroxisome biogenesis disorders.  相似文献   

17.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

18.
Pex18p is constitutively degraded during peroxisome biogenesis   总被引:1,自引:0,他引:1  
Pex18p and Pex21p are structurally related yeast peroxins (proteins required for peroxisome biogenesis) that are partially redundant in function. One or the other is essential for the import into peroxisomes of proteins with type 2 peroxisomal targeting sequences (PTS2). These sequences bind to the soluble PTS2 receptor, Pex7p, which in turn binds to Pex18p (or Pex21p or possibly both). Here we show that Pex18p is constitutively degraded with a half-time of less than 10 min in wild-type Saccharomyces cerevisiae. This degradation probably occurs in proteasomes, because it requires the related ubiquitin-conjugating enzymes Ubc4p and Ubc5p and occurs normally in a mutant lacking the Pep4p vacuolar protease. The turnover of Pex18p stops, and Pex18p accumulates to a much higher than normal abundance in pex mutants in which the import of all peroxisomal matrix proteins is blocked. This includes mutants that lack peroxins involved in receptor docking at the membrane (Deltapex13 or Deltapex14), a mutant that lacks the peroxisomal member of the E2 family of ubiquitin-conjugating enzymes (Deltapex4), and others (Deltapex1). This stabilization in a variety of pex mutants indicates that Pex18p turnover is associated with its normal function. A Pex18p-Pex7p complex is detected by immunoprecipitation in wild type cells, and its abundance increases considerably in the Deltapex14 peroxisome biogenesis mutant. Cells that lack Pex7p fail to stabilize and accumulate Pex18p, indicating an important role for complex formation in the stabilization. Mono- and diubiquitinated forms of Pex18p are detected in wild-type cells, and there is no Pex18p turnover in a yeast doa4 mutant in which ubiquitin homeostasis is defective. These data represent, to the best of our knowledge, the first instance of an organelle biogenesis factor that is degraded constitutively and rapidly.  相似文献   

19.
In Saccharomyces cerevisiae, peroxisomal inheritance from mother cell to bud is conducted by the class V myosin motor, Myo2p. However, homologues of S. cerevisiae Myo2p peroxisomal receptor, Inp2p, are not readily identifiable outside the Saccharomycetaceae family. Here, we demonstrate an unexpected role for Pex3 proteins in peroxisome inheritance. Both Pex3p and Pex3Bp are peroxisomal integral membrane proteins that function as peroxisomal receptors for class V myosin through direct interaction with the myosin globular tail. In cells lacking Pex3Bp, peroxisomes are preferentially retained by the mother cell, whereas most peroxisomes gather and are transferred en masse to the bud in cells overexpressing Pex3Bp or Pex3p. Our results reveal an unprecedented role for members of the Pex3 protein family in peroxisome motility and inheritance in addition to their well-established role in peroxisome biogenesis at the endoplasmic reticulum. Our results point to a temporal link between peroxisome formation and inheritance and delineate a general mechanism of peroxisome inheritance in eukaryotic cells.  相似文献   

20.
Peroxisomes require peroxin (Pex) proteins for their biogenesis. The interaction between Pex3p, which resides on the peroxisomal membrane, and Pex19p, which resides in the cytosol, is crucial for peroxisome formation and the post-translational targeting of peroxisomal membrane proteins (PMPs). It is not known how Pex3p promotes the specific interaction with Pex19p for the purpose of PMP translocation. Here, we present the three-dimensional structure of the complex between a cytosolic domain of Pex3p and the binding-region peptide of Pex19p. The overall shape of Pex3p is a prolate spheroid with a novel fold, the 'twisted six-helix bundle.' The Pex19p-binding site is at an apex of the Pex3p spheroid. A 16-residue region of the Pex19p peptide forms an α-helix and makes a contact with Pex3p; this helix is disordered in the unbound state. The Pex19p peptide contains a characteristic motif, consisting of the leucine triad (Leu18, Leu21, Leu22), and Phe29, which are critical for the Pex3p binding and peroxisome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号