首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have established a reproducible procedure for transformation of shoot apices and regeneration of transgenic plants for two indica rice cultivars, white ponni (WP) and Pusa Basmathi 1 (PB 1). Four-day-old shoot apex explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA 101 harbouring a binary plasmid pRIT1. The vector contained an improved hygromycin phosphotransferase (hpt) gene for hygromycin resistance driven by actin 1 promoter and the reporter gene beta-glucuronidase intron (INT-GUS) controlled by CaMV 35S promoter. Rice shoots were induced on media containing 0.1 mg/l napthalene acetic acid (NAA), 1.0 mg/l kinetin (kn), 1.0 mg/l N(6)-benzyleaminopurin (BAP), 300 mg/l casaminoacid, 500 mg/l proline, 50 mg/l hygromycin and 500 mg/l cefotaxime. Transgenic plants were raised in pots and seeds were collected. Histochemical and polymerase chain reaction (PCR) analyses of field established transgenic rice plants and their offsprings confirmed the presence of GUS gene. Integration of T-DNA into the genome of putative transgenics was further confirmed by southern analysis. The transformation efficiency of WP was found to be ranging from 5.6 to 6.2% whereas in the case of PB1, it was from 7 to 8%. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both hpt and GUS gene.  相似文献   

2.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   

3.
4.
In the past ten years, laboratory studies and open pond experiments at Hutt Lagoon, in Western Australia, have developed a commercial process, for extracting the food colouring, β-carotene, from algal cultures. The hypersaline microscopic alga, Dunaliella salina, is grown in 50 ha of open ponds, harvested, and the β-carotene extracted, concentrated and packaged as 2% and 20% suspensions in vegetable oil.  相似文献   

5.
The purpose of this study was to improve transformation efficiency for three Korean rice cultivars, Ilpum, Dasan, and Namyang. Using two different media with or without light, efficiencies of callus induction, regeneration, and transformation of the Korean cultivars were compared to Japanese cultivar, Nipponbare, as a control. Immature cv. Nipponbare seeds produced 35.5% and 16.1% regeneration efficiency on CIM and N6D media, respectively. Among the Korean cultivars, only cv. Ilpum induced on CIM in the dark was actively regenerated with efficiency of 8.2%. With LBA4404 (pTOK233), no difference for the efficiency of transformation was found between mature and immature seeds of cv. Ilpum. This result reveals that mature seeds can be substituted for this study with no difference. The anther-derived calli of cv. Namyang inoculated with either LBA4404 (pTOK233) or EHA101 (pSMABuba) showed regeneration efficiencies of 14.5% and 20.9%, respectively, even though efficiency of transformation did not differ with these two vectors. We suggest that the anther-derived calli are better-materials for transformation experiment due to their genotype-independent regeneration. In the assay of GUS, all of the calli that survived on the second selection medium were strongly stained. PCR-Southern blot analyses confirmed that T-DNA was stably transformed into all tissues selected. Cvs. Nipponbare and Namyang transformed by LBA4404 (pTOK233) showed positive color in the NPTII ELISA.  相似文献   

6.

Background and Aims

Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3 nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3 availability are not known.

Methods

Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants.

Key Results

Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3 compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’.

Conclusions

The results indicate that higher NO3 responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’.  相似文献   

7.
Using 2-D electrophoresis, we analyzed proteins from transgenic rice overexpressing gibberellin acid (GA) catabolic enzyme, GA2-oxidase. These results indicate eight specific proteins differentially expressed in the transformed rice stems of T1 generation, but non in case of T2 generation. Proteins isolated from different stages of leaves of T1 generation showed no significant differences, except one-month-old leaf, where five differentially expressed proteins are visible.This work was supported in part by a research project of an Identification and Analysis of Proteins for Gene Discovery and Elucidation of Functions of Useful Genes in Rice Genome from Ministry of Agriculture, Forestry and Fisheries, and also supported by a part of grant from the Program of Basic Research Activities for Innovative Biosciences. Martin Hajduch was supported by European Commission’s specific research and technological development program “Confirming the International Role of Community Research” 1998-2002 (EU Fellowship to Japan). The authors are solely responsible for the content of this paper and it does not represent the opinion of the Community, and the Community is not responsible for any of use that might be made of date appearing herein.  相似文献   

8.
Summary Mature seed-derived callus from an elite Chinese japonica rice cv. Ewan 5 was cotransformed with two plasmids, pWRG1515 and pRSSGNAl, containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β-glucuronidase gene (gusA) and the snowdrop (Galanthus nivalis) lectin gene (gna) via particle bombardment. Thirty-five independent transgenic rice plants were regenerated from 177 bombarded calluses. Eighty-three percent of the transgenic plants contained all three genes, as revealed by Southern blot analysis. Western blot analysis revealed that 23 out of 29 gna-containing transgenic plants expressed Galanthus nivalis agglutinin (GNA) (79%) at various levels, with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of all three transgenes (gna, hpt and gusA) in the R2 progeny. Amongst the R2 generation two independent homozygous lines were identified that expressed all three transgenes. Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to rice brown planthopper (Nilaparvata lugens, BPH) by decreasing the survival, overall fecundity of BPH, retarding development, and decreasing the feeding of BPH. These BPH-resistant lines have been incorporated into a rice insect resistance breeding program. This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis-based selection, conferred enhanced resistance to BPH.  相似文献   

9.
Summary RAPD analysis was performed among eight rice somaclonal families known to vary for specific characters and four somaclonal families which were phenotypically normal. The parental cultivar,indica rice cv. FR13A, was found to be homogeneous and homozygous at all but one of the 45 RAPD loci. Polymorphisms were found at 28 of the 45 bands among the somaclonal families, including both loss of parental bands, and the appearance of novel non-parental bands. Segregation data revealed both heterozygous and homozygous mutation events, with recessive mutations more prevalent than dominant. All somaclonal families differed significantly from the parental material, indicating that genomic alterations occurred in all families regardless of phenotype. None of the variant families could be regarded as isogenic lines of FR13A at the DNA level. However, some of the DNA level variation may be in highly repeated sequences with no phenotypic effects. The implications for somaclonal breeding and genetic engineering programs are discussed.  相似文献   

10.
In this paper, 20 kinds of different 2-(α-arylamino phosphonate)-chitosan (2-α-AAPCS) were prepared by different Schiff bases of chitosan (CS) reacted with di-alkyl phosphite in benzene solution. The structures of the derivatives (2-α-AAPCS) were characterized by FT-IR spectroscopy and elemental analysis. In addition, the antifungal activities of the derivatives against four kinds of fungi were evaluated in the experiment. The results indicated that all the prepared 2-α-AAPCS had a significant inhibiting effect on the investigated fungi when the derivatives concentration ranged from 50 to 500 μg mL−1. Furthermore, the antifungal activities of the derivatives increased with increasing the molecular weight and concentration. And the antifungal activities of the derivatives were affected by their dimensional effect and charge density. Besides, the rule and mechanism of the antifungal activities of them were discussed in this paper.  相似文献   

11.
The release levels of a growth inhibitor, momilactone B, from rice (Oryza sativa L.) seedlings of eight cultivars were compared with the endogenous concentrations of momilactone B in their seedlings. All rice cultivars contained momilactone B in the seedlings, and their concentrations differed between the cultivars. Momilactone B was also found in all culture solutions in which these rice seedlings were grown, and the concentrations differed between the cultivars. The momilactone B concentrations in the culture solutions were reflected in the momilactone B concentrations in the seedlings. These results suggest that all rice cultivars may produce momilactone B and release momilactone B into the culture solutions. In addition, the release level of momilactone B may depend on the production level of momilactone B in the seedlings, which may affect allelopathic potential of these rice cultivars because as a growth inhibitor, momilactone B is able to act as an allelochemical.  相似文献   

12.
Summary Chlorotic plants were segregated in F2 populations in varietal crosses of common rice. The genetic basis and distribution of the genes causing F2 chlorosis in native cultivars were studied to examine the role of the F2 chlorosis in varietal differentiation of rice. It was proven that this F2 chlorosis was controlled by a set of duplicate genes, hca-1 and hca-2. The hca-2 gene was widely distributed in native cultivars of the Japonica type, while many Indica types carried its dominant allele hca-2 +. Japanese cultivar J-147 carried hca-2. The hca-1 gene was frequently distributed in cultivars containing the Hwc-2 gene for F1 weakness. We concluded that F2 chlorosis does not cause or promote varietal differentiation in rice.  相似文献   

13.
Rice (Oryza sativa) is sensitive to salt stresses and cannot survive under low salt conditions, such as 50 mM NaCl. In an attempt to improve salt tolerance of rice, we introduced katE, a catalase gene of Escherichia coli, into japonica rice cultivar, Nipponbare. The resultant transgenic rice plants constitutively expressing katE were able to grow for more than 14 days in the presence of 250 mM NaCl, and were able to form flower and produce seeds in the presence of 100 mM NaCl. Catalase activity in the transgenic rice plants was 1.5- to 2.5-fold higher than non-transgenic rice plants. Our results clearly indicate that simple genetic modification of rice to express E. coli-derived catalase can efficiently increase its tolerance against salt stresses. The transformant presented here is one of the most salt-tolerant rice plants created by molecular breeding so far.  相似文献   

14.
Rice seedlings were grown in hydroponic culture to determine the effects of external Zn and P supply on plant uptake of Cd in the presence or absence of iron plaque on the root surfaces. Iron plaque was induced by supplying 50 mg l−1 Fe2+ in the nutrient solution for 2 day. Then 43-day-old seedlings were exposed to 10 μmol l−1 Cd together with 10 μmol l−1 Zn or without Zn (Zn–Cd experiment), or to 10 μmol l−1 Cd with 1.0 mmol l−1 P or without P (P–Cd experiment) for another 2 day. The seedlings were then harvested and the concentrations of Fe, Zn, P and Cd in dithionite–citrate–bicarbonate (DCB) extracts and in roots and shoots were determined. The dry weights of roots and shoots of seedlings treated with 50 mg l−1 Fe were significantly lower than when no Fe was supplied. Adsorption of Cd, Zn and P on the iron plaque increased when Fe was supplied but Cd concentrations in DCB extracts were unaffected by external Zn or P supply levels. Cd concentrations in shoots and roots were lower when Fe was supplied. Zn additions decreased Cd concentrations in roots but increased Cd concentrations in shoots, whereas P additions significantly increased shoot and root Cd concentrations and this effect diminished when Fe was supplied. The percentage of Cd in DCB extracts was significantly lower than in roots or shoots, accounting for up to 1.8–3.8% of the plant total Cd, while root and shoot Cd were within the ranges 57–76% and 21–40% respectively in the two experiments. Thus, the main barrier to Cd uptake seemed to be the root tissue and the contribution of iron plaque on root surfaces to plant Cd uptake was minor. The changes in plant Cd uptake were not due to Zn or P additions altering Cd adsorption on iron plaque, but more likely because Zn or P interfered with Cd uptake by the roots and translocation to the shoots.  相似文献   

15.
16.
17.
Ferredoxin-dependent glutamate synthase (Fd-Gogat; EC 1.4.7.1) in leaf and root plastids is the last enzyme involved in the pathway of nitrate assimilation in higher plants. Arabidopsis thaliana expresses two different genes: the first, light regulated, specific of green tissues and the second expressed in other tissues. In this work, we investigated whether in our clone, OsGog2 AC Y12595, this gene is up-regulated by light or it is expressed under darkness. Fd-Gogat specific activity, protein and mRNA increased after light treatment in rice shoots. In roots, the activity and the protein content remained constant, whereas the mRNA is repressed by light treatment. The results obtained using a specific probe, situated in the 3′ untranslated region of the OsGog2 cDNA, indicated that OsGog2 gene is up-regulated by light and that its expression is tissue specific and suggested that a dark expressed Fd-Gogat gene could be present in rice similarly as in Arabidopsis.  相似文献   

18.
Nucleoside diphosphate kinase (NDK) is a ubiquitous enzyme found in all organisms and cell types, and catalyzes the transfer of the phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. The enzyme is involved in and required for coleoptile elongation in rice as the level of the rice NDK (rNDK) changes during seed germination and the early stages of seedling growth. The expression of rice NDK gene is up-regulated in the growing coleoptiles when the anaerobic stress persists. The rNDK structure determined at 2.5 A resolution consists of a four-stranded anti-parallel beta-sheet, of which the surfaces are partially covered with six alpha-helices; its overall and active site structures are similar to those of homologous enzymes except the major conformation variations of residue 132-138 regions, involving significant structural contacts. The model contains 148 residues of 149 residues in total and averaged 19 water molecules per monomer for 12 molecules in an asymmetric unit. A mold of 12 superimposed molecules shows that the alphaA-alpha2 area has greater variations and higher temperature factors, indicating the flexibility for a substrate entrance. Hexameric molecular packing in both crystal and solution implies that rNDK functions as hexamers. This rNDK structure, which is the first NDK structure from a higher plant system, provides the structural information essential to understand the functional significance of this enzyme during growth and development in both rice and other plants.  相似文献   

19.
Introduction of large-DNA fragments into cereals by Agrobacterium-mediated transformation is a useful technique for map-based cloning and molecular breeding. However, little is known about the organization and stability of large fragments of foreign DNA introduced into plant genomes. In this study, we produced transgenic rice plants by Agrobacterium-mediated transformation with a large-insert T-DNA containing a 92-kb region of the wheat genome. The structures of the T-DNA in four independent transgenic lines were visualized by fluorescence in situ hybridization on extended DNA fibers (fiber FISH). By using this cytogenetic technique, we showed that rearrangements of the large-insert T-DNA, involving duplication, deletion and insertion, had occurred in all four lines. Deletion of long stretches of the large-insert DNA was also observed in Agrobacterium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号