首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We studied root net uptake of ammonium (NH 4 + ) and nitrate (NO 3 ) in species of the genus Piper (Piperaceae) under high, intermediate and low photosynthetically active photon flux densities (PFD). Plants were grown hydroponically, and then transferred to temperature controlled (25° C) root cuvettes for nutrient uptake determinations. Uptake solutions provided NH 4 + and NO 3 simultaneously (both) or separately (single). In the first experiment, seven species of Piper, from a broad range of rainforest light habitats ranging from gap to understory, were screened for mineral nitrogen preference (100 M NH 4 + and/or 100 M NO 3 ) at intermediate PFD (100 mol m–2 s–1). Preference for NH 4 + relative to NO 3 , defined as the ratio of NH 4 + (both):NO 3 (both) net uptake, was higher in understory species than in gap species. Ammonium repression of NO 3 uptake, defined as the ratio of NO 3 (single): NO 3 (both) net uptake, was also higher in understory species as compared to gap species. In a second set of experiments, we examined the effect of nitrogen concentration (equimolar, 10 to 1000 M) on NH 4 + preference and NH 4 + repression of NO 3 net uptake at high (500 mol m–2 s–1) and low (50 mol m–2 s–1) PFD in a gap (P. auritum), generalist (P. hispidum) and understory species (P. aequale). All species exhibited negligible NH 4 + repression of NO 3 net uptake at high PFD. At low PFD, NH 4 + preference and repression of NO 3 net uptake occurred in all species (understory > generalist > gap), but only at intermediate nitrogen concentrations, i.e. between 10 and 200 M. Ammonium repression of net NO 3 uptake decreased or increased rapidly (in < 48 h) after transitions from low to high or from high to low PFD respectively. No significant diurnal patterns in NO 3 or NH 4 + net uptake were observed.CIWDPB publication # 1130  相似文献   

2.
D. Strack  J. Reinecke  S. Takeuchi 《Planta》1986,167(2):212-217
The control of malate metabolism and stimulation of 1-sinapolyglucose: L-malate sinapoyltransferase (SMT) activity in radish (Raphanus sativus L. var. sativus) cotyledons has been studied. The light-induced and nitrate-dependent activity of SMT catalyzes the formation of O-sinapoly-L-malate via 1-O-sinapoyl--D-glucose. When dark-grown radish seedlings, cultivated in quartz sand with nutrient solution containing NO 3 - as the sole N source, were treated with light, SMT activity increased concomitantly with free malate in the cotyledons. This light effect was suppressed in seedlings grown in a culture medium which contained in addition to NO 3 - also NH 4 + . However, treatment with methionine sulfoximine neutralized this ammonium effect, resulting again in both rapid accumulation of malate and rapid increase in SMT activity. When seedlings grown on NO 3 - nitrogen were subsequently supplied with NH 4 + nitrogen, the accumulated level of L-malate rapidly dropped and the SMT increase ceased. The enzyme activity decreased later on, reaching the low activity level of plants which were grown permanently on NO 3 - /NH 4 + -nitrogen. An external supply (vacuum infiltration) of malate to excised cotyledons and intact seedings, grown on NO 3 - /NH 4 + -nitrogen medium, specifically promoted a dose-dependent increase in the activity of SMT. In summary these results provide evidence indicating that the SMT activity in cotyledons of Raphanus sativus might be related to the metabolism of malic acid.Abbreviation MSO L-methionine sulfoximine - SinGlc 1-O-sinapoyl--D-glucose - SinMal O-sinapoyl-L-malate - SMT 1-O-sinapoyl--D-glucose:L-malate sinapolytransferase  相似文献   

3.
The effect of NH 4 + on the regulation of NO 3 and NO 2 transport systems in roots of intact barley (Hordeum vulgareL.) seedlings grown in NO 3 or NO 2 was studied. Ammonium partially inhibited induction of both transport systems. The inhibition was less severe in NO 2 -fed than in NO 3 -fed seedlings, presumably due to lower uptake of NH 4 + in the presence of NO 2 . In seedlings pretreated with NH 4 + subsequent induction was inhibited only when NH 4 + was also present during induction, even though pretreated roots accumulated high levels of NH 4 + . This indicates that inhibition may be regulated by NH 4 + concentration in the cytoplasm rather than its total accumulation in roots. L-Methionine sulfoximine did not relieve the inhibition by NH 4 + , suggesting that inhibition is caused by NH 4 + itself rather than by its assimilation product(s). Ammonium inhibited subsequent expression of NO 3 transport activity similarly in roots grown in 0.1, 1.0, or 10 mM NO 3 for 24 h (steady-state phase) or 4 d (decline phase), indicating that it has a direct, rather than general feedback effect. Induction of the NO 3 transport system was about twice as sensitive to NH 4 + as compared to the NO 2 transport system. This may relate to higher turnover rates of membraneassociated NO 3 -transport proteins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - MSO L-methionine sulfoximine  相似文献   

4.
Uptake of NH 4 + and NO 3 - by the N2-fixing lichens Peltigera praetextata (two-component lichen) and P. aphthosa (three-component lichen) was studied. In addition, the effects of these ions, separately and in combination, on C2H2 reduction and CO2 exchange were examined. Both NH 4 + and NO 3 - were utilized by the lichens. NH4NO3 caused an increased liberation of NO 3 - from the lichens as compared to the release observed in untreated lichen thalli. NH 4 + and NO 3 - led to reduced C2H2 reduction by P. praetextata, which, however, was less pronounced than when the two ions were given in combination. In P. aphthosa the C2H2 reduction was inhibited by NH 4 + and NH4NO3, but not by NO 3 - alone. NH 4 + and NO 3 - had no effect on the net photosynthesis of P. praetextata, while, in combination, they led to inhibition, although only at a concentration higher than that inhibitory to the C2H2 reduction of P. aphthosa. The photsynthesis was inhibited by all salts, but only initially, probably a salt effect. Effects of NH 4 + on the membrane potential of the cyanobiont are suggested as an important factor causing the depression of net photosynthesis.  相似文献   

5.
The effect of copper on the uptake of nitrogen and the tissue contents of inorganic nitrogen, amino acids and proteins were studied in cooper-sensitive Silene vulgaris (Moench) Garcke, grown at different nitrogen sources (NH4 + or NO3 -). All the toxic copper levels tested, i.e. 4, 8, 16 M Cu2+, strongly inhibited the uptake of nitrogen, especially of NO3 -, and decreased the content of NO3 -, amino acids and proteins. Especially at 4 and 8 M Cu2+, NH4 + accumulated in the plants, suggesting that the conversion of NH4 - into amino acids was inhibited.  相似文献   

6.
Finfish culture is a growing industry, and it causes a nutrient loading problem. To investigate the feasibility of an integrated culture of kelp and salmon, 15-cm long kelp (Laminaria saccharina) was grown in salmon culture effluent. The objectives were to test the effects of flow rate and kelp density on dissolved inorganic nitrogen removal (DIN), and DIN uptake and growth by the kelp. NH 4 + , NO 3 and DIN (NH 4 + + NO 3 ) loadings were in the ranges 6.2–25.4, 12.9–40.0, 19.7–52.7 mol 1–1, respectively, over the experimental period.Surplus uptake of nitrogen was not evident, because the C:N ratio (10–11) was constant in all experiments. During light periods, the kelp removed from 170–339 mol 1–1 h–1, and approximately 26–40% of the incoming DIN. The DIN uptake rate, based on daylight sampling periods, ranged between 6.1–22.5 mol g–1 dry mass h–1. The highest-flow rate, lowest-density tank had the highest DIN uptake rate. Debris from the fish effluent settling on the kelp thalli in the low-flow rate tanks affected uptake. Mean DIN uptake rate based on 3 days of growth for all flow-density combinations ranged between 5.4–8.3 mol g–1 dry mass h–1. The kelp utilized NH 4 + and NO 3 equally.The growth ranged between 6.5–9% d–1. The biomass production ranged from 1–2 g per sampling period. The highest growth rate and biomass production were achieved by kelp in the highest-flow rate, lowest-density tank. Lower DIN concentrations due to higher DIN removal rates in the other tanks and light limitation due to self-shading in the high-density tanks were probably responsible for the reduced growth rate in these tanks.Author for correspondence  相似文献   

7.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

8.
The uptake of ammonia and O2 by washed cells of Nitrosomonas has been followed simultaneously and continuously using electrode techniques. The stoichiometry of NH 4 + oxidation, O2 uptake and NO 2 - production was 1 : 1.5 : 1.0 and for NH2OH oxidation a ratio of 1 for O2 : NO 2 - . A variety of inhibitors of electron transport and metals as well as uncouplers restricted ammonia uptake more markedly than O2 utilization. There is good evidence for the involvement of copper in the NH 4 + uptake process.A quinacrine fluorescence technique has been used to study the proton extrusion by washed cells on adding NH4Cl and NH2OH respectively as substrates. The uptake of NH 4 + was followed by the extrusion of H+ and this process was depressed by those inhibitors which were also effective in the electrode experiments. A requirement for copper is also established for the translocation of protons into the medium, resulting from the uptake of NH 4 + by cells.Abbreviations mCCCP carbonyl cyanide m-chlorophenylhydrazone - DBP 2,4 dibromophenol - DCCD N-N-dicyclohexylcarbodimide - DIECA Sodium diethyldithiocarbamate - DNP 2,4 dinitrophenol - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - NBD chloride 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole - N-serve 2-chloro-6-trichloromethyl-pyridine - PCP pentachlorophenol - 2-TMP 2-trichloromethyl-pyridine - TPB tetraphenylboron - TTFA 1-[thenoyl-(2)]-3,3,3-trifluoracetone - KSCN Potassium thiocyanate  相似文献   

9.
Compartmentation and flux characteristics of ammonium in spruce   总被引:1,自引:0,他引:1  
Using 13NH 4 + as a tracer, compartmental analyses for NH 4 + were performed in non-mycorrhizal roots of intact Picea glauca (Moench) Voss. seedlings at four different concentration regimes of external NH 4 + ([NH 4 + ]o), i.e. 0, 10, 100, and 1500 M. Three kinetically distinct compartments were identified, with half-lives of exchange of approximately 2 s, 30 s, and 14 min, assumed to represent surface adsorption, Donnan free space, and cytoplasm, respectively. No significant differences were found in half-lives of exchange with changes in [NH 4 + ]o. Influx was calculated to be 0.96 mol·g–1·h–1 in N-deprived plants (measured at 10 M [NH 4 + ]o), while under steady-state conditions it was 0.21 mol·g–1h–1 at 10 M [NH 4 + ]o, 1.96 mol·g–1–1 at 100 M [NH 4 + ]o, and 6.45 mol·g–1·h–1 at 1.5 mM [NH 4 + ]o. Efflux measured over the same range constituted approximately 9% of influx in N-deprived plants, 10% at 10 M, 28% at 100 M, and 35% at 1.5 mM [NH 4 + ]o. Cytoplasmic [NH 4 + ] was estimated at 6 m M in N-deprived plants, 2 mM at 10 M [NH 4 + ]o, 14 mM at 100 M, and 33 mM at 1.5 mM. Free-space [NH 4 + ] was 84 M, 50 M, 700 M, and 8 mM, respectively. In comparison with previously published data on fluxes and compartmentation of NO 3 in white-spruce seedlings, results of this study identify a pronounced physiological preference of this species for NH 4 + over NO 3 as an inorganic N source in terms of uptake and intracellular accumulation. The significant ecological importance of this N-source preference is discussed.The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. P. Poon for essential assistance in experiments.  相似文献   

10.
V. K. Rajasekhar  H. Mohr 《Planta》1986,169(4):594-599
Nitrate-induced and phytochrome-modulated appearance of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of the mustard (Sinapis alba L.) seedling is strongly affected by externally supplied ammonium (NH 4 + ). In short-term experiments between 60 and 78 h after sowing it was found that in darkness NH 4 + —simultaneously given with NO 3 - —strongly inhibits appearance of nitrate-inducible NR and NIR whereas in continuous far-red light—which operates exclusively via phytochrome without significant chlorophyll formation —NH 4 + (simultaneously given with NO 3 - ) strongly stimulates appearance of NR. The NIR levels are not affected. This indicates that NR and NIR levels are regulated differently. In the absence of external NO 3 - appearance of NR is induced by NH4 in darkness as well as in continuous far-red light whereas NIR levels are not affected. On the other hand, in the absence of external NO 3 - , exogenous NH 4 + strongly inhibits growth of the mustard seedling in darkness as well as in continuous far-red light. This effect can be abolished by simultaneously supplying NO 3 - . The adverse effect of NH 4 + on growth (NH 4 + -toxicity) cannot be attributed to pH-changes in the medium since it was shown that neither the growth responses nor the changes of the enzyme levels are related to pH changes in the medium. Non-specific osmotic effects are not involved either.Abbreviations c continuous - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1)  相似文献   

11.
It is generally assumed that plant assimilation constitutes the major sink for anthropogenic Nitrate NO 3 deposited in temperate forests because plant growth is usually limited by nitrogen (N) availability. Nevertheless, plants are known to vary widely in their capacity for NO 3 uptake and assimilation, and few studies have directly measured these parameters for overstory trees. Using a combination of field and greenhouse experiments, we studied the N nutrition of Acer saccharum Marsh. in four northern hardwood forests receiving experimental NO 3 additions equivalent to 30 kg N ha–1 year–1. We measured leaf and fine-root nitrate reductase activity (NRA) of overstory trees using an in vivo assay and used 15N to determine the kinetic parameters of NO 3 uptake by excised fine roots. In two greenhouse experiments, we measured leaf and root NRA in A. saccharum seedlings fertilized with 0–3.5 g NO 3 –N m–2 and determined the kinetic parameters of NO 3 and NH 4 + uptake in excised roots of seedlings. In both overstory trees and seedlings, rates of leaf and fine root NRA were substantially lower than previously reported rates for most woody plants and showed no response to NO 3 fertilization (range = non-detectable to 33 nmol NO 2 g–1 h–1). Maximal rates of NO 3 uptake in overstory trees also were low, ranging from 0.2 to 1.0 mol g–1 h–1. In seedlings, the mean V max for NO 3 uptake in fine roots (1 mol g–1 h–1) was approximately 30 times lower than the V max for NH 4 + uptake (33 mol g–1 h–1). Our results suggest that A. saccharum satisfies its N demand through rapid NH 4 + uptake and may have a limited capacity to serve as a direct sink for atmospheric additions of NO 3 .  相似文献   

12.
Solute concentrations in atmospheric depositionand stream water were measured in two mixed-conifercatchments (Tharps and Log creeks) in the SierraNevada of California from 1984 through 1995, a periodincluding a 6-year drought and a prescribed burn inone catchment. The effects of prescribed burning inthe Tharps Creek catchment significantly increasedthe concentrations of most solutes in stream water. In the first year after prescribed burning, the VWM(volume-weighted mean) concentrations of acid anionsin stream water increased proportionally more thanthose of the base cations, and ANC (acid neutralizingcapacity) more than doubled. Sulfate and NO 3 - increased proportionally more in streamwater than any other ions after the fire, but pre- andpost-burn VWM pH were not significantlydifferent. VWM SO 4 2- and NO 3 - concentrations the first year after burning occurredwere about 16- and 2,000-fold above pre-burnbaselines, respectively, while that of Cl-increased 4-fold. Net retention (precipitationinputs minus streamwater outputs) of H+,NO 3 - , NH 3 + , SO 4 2- and Cl- occurred in both catchments, except afterprescribed burning of the Tharps Creek catchment inthe fall of 1990, which caused a net export ofSO 4 2- , Cl- and K+ thefirst year after the burn. Most solutes remained abovepre-disturbance concentrations by the end of the thirdyear after burning, whereas H+ and SiO2remained below. Periodic increases in theconcentrations of Na+, Ca2+ and SO 4 2- , and decreases in ANC and SiO2occurred during a 6-year drought monitored in theadjacent undisturbed catchment of Log Creek.  相似文献   

13.
Summary Concentration dependence of net ammonium and nitrate uptake was monitored for a cultivar of tomato, Lycopersicon esculentum, and two accessions of a neotropical wild relative, L. hirsutum. The kinetics of net NH 4 + uptake differed among these taxa and were not dependent on the ionic composition of the nutrient solution. The kinetics of net NO 3 - uptake were dependent on the composition of the nutrient solution; the presence of NH 4 + or Cl- enhanced net NO 3 - uptake for the cultivated species and for a highland accession of the wild species. The capacity for net NO 3 - uptake was greater than the capacity for net NH 4 + uptake in all three taxa; the proportion of NO 3 - to NH 4 + absorbed was much greater for the wild taxa. Our data suggest that NO 3 - may be a more important source of mineral nitrogen than NH 4 + for these tropical taxa.  相似文献   

14.
Rainbow trout, Oncorhynchus mykiss, acclimated to 33% sea water (12 mg·ml-1 salinity) experienced significant (10 meq·1-1) increases in plasma [Na+] and [Cl-] within 5 h of exposure to 6.3 mol copper·1-1 indicating severe impairment of branchial ionoregulatory capacity. All plasma ion levels subsequently stabilised once the transbranchial [Na+] gradient was reduced to zero. The similar ionic strength of the external medium and their body fluids appeared to protect trout maintained in 33% sea water from further ionoregulatory stress and any secondary physiological disturbances during exposure to copper. Despite three- and fourfold greater transbranchial [Na+] and [Cl-] gradients, trout acclimated to full-strength sea water (35 mg·ml-1 salinity) suffered no major changes in plasma Na+, Cl-, K+, or Ca2+, blood gases or haematology during 24 h exposure to 6.3 mol copper·1-1. This reduction in toxicity in full strength sea water cannot be explained by differences in copper speciation. We suggest that during acute exposure to waterborne copper, active NaCl extrusion is unaffected due to the basolateral location of the gill Na+/K+-ATPase, but that ionoregulatory disturbances can occur due to gill permeability changes secondary to the displacement of surface-bound Ca2+. However, in full strength sea water the three-fold higher ambient [Ca2+] and [Mg2+] appear to be sufficient to prevent any detrimental permeability changes in the presence of 6.3 mol copper·1-1. Plasma [NH + 4 ] and [HCO - 3 ] were both significantly elevated during exposure to copper, indicating that some aspects of gill ion transport (specifically the apical Na+/NH + 4 and Cl-/HCO - 3 exchanges involved in acid/base regulation and nitrogenous waste excretion) are vulnerable to inhibition in the presence of waterborne copper.Abbreviations C aO2 arterial oxygen content - Hb haemoglobin - Hct haematocrit - MABP mean arterial blood pressure - MCHC mean cell haemoglobin content - MO2 rate of oxygen consumption - P a CO2 arterial carbon dioxide tension - P aO2 arterial oxygen partial pressure - S salinity - SW sea water - T Amm total ammonia (=NH3+NH + 4 ) - T CO 2 total carbon dioxide - TEP transepithelial potential - TOC total organic carbon - %Hb-O2 percentage of haemoglobin saturated with oxygen  相似文献   

15.
Root NO3- absorption was examined under steady-state conditions in the presence and absence of NH4+ using intact tomato plants (Lycopersicon esculentum cv. T-5). Plants grown under a low-salt regime showed much higher rates of NO3- absorption than plants grown under a high-salt regime, but the presence of NH4+ at concentrations less than 200 M increased the capacity for net NO3- uptake for both the low- and high-salt conditions. Simultaneous changes in net NO3-, K+, and H+ exchanges were continuously monitored for 3 h prior to and up to 7 h following exposure to NH4+. Upon first exposure to 50 or 100 M NH4+, NO3- absorption remained constant; but during the subsequent 6 to 7 h, NO3- absorption continually increased. Net K+ absorption decreased immediately following its first exposure to NH4+, but gradually recovered during the 7 h following first exposure. Changes in K+ absorption were not correlated with changes in NO3- absorption. Proton efflux gradually increased under NH4+ exposure and was significantly correlated with the observed increase in NO3- absorption. When roots absorbing NO3- were exposed to 5000 M NH4-, NO3- absorption declined throughout the entire observation period.Key words: Ammonium, nitrate, proton, absorption, tomato   相似文献   

16.
Clough  T.J.  Ledgard  S.F.  Sprosen  M.S.  Kear  M.J. 《Plant and Soil》1998,199(2):195-203
A field lysimeter experiment was conducted over a 406 day period to determine the effect of different soil types on the fate of synthetic urinary nitrogen (N). Soil types included a sandy loam, silty loam, clay and peat. Synthetic urine was applied at 1000 kg N ha-1, during a winter season, to intact soil cores in lysimeters. Leaching losses, nitrous oxide (N2O) emissions, and plant uptake of N were monitored, with soil 15N content determined upon destructive sampling of the lysimeters. Plant uptake of urine-N ranged from 21.6 to 31.4%. Soil type influenced timing and form of inorganic-N leaching. Macropore flow occurred in the structured silt and clay soils resulting in the leaching of urea. Ammonium (NH 4 + –N), nitrite (NO 2 - –N) and nitrate (NO3 -–N) all occurred in the leachates with maximum concentrations, varying with soil type and ranging from 2.3–31.4 g NH 4 + –N mL-1, 2.4–35.6 g NO 2 - –N mL-1, and 62–102 g NO 3 - –N mL-1, respectively. Leachates from the peat and clay soils contained high concentrations of NO 2 - –N. Gaseous losses of N2O were low (<2% of N applied) over a 112 day measurement period. An associated experiment showed the ratio of N2–N:N2O–N ranged from 6.2 to 33.2. Unrecovered 15N was presumed to have been lost predominantly as gaseous N2. It is postulated that the high levels of NO 2 - –N could have contributed to chemodenitrification mechanisms in the peat soil.  相似文献   

17.
Summary Chitosan:Phormidium aggregates (chitosan: algae=1:2, dry weight basis) were used as a biological tertiary treatment to remove the nitrogen (NH 4 + , NO 2 - , NO 3 - ) and phosphorus (PO 4 3- ) from a secondary effluent. In a batch system, 71 and 92% of P–PO 4 3- were removed after 6 and 24 h, respectively. The orthophosphate removal rate was identical for all three concentrations of algae-chitosan tested (3.3, 4.6, 5.9 g d. wt.·l-1), and was 90 g±2 g P–PO 4 3- ·l-1·h-1, for a 90% removal. Under control conditions (chitosan flakes only added to the effluent) 73 and 78% of PO 4 3- were removed after 6 and 24 h respectively. A 95% removal of inorganic nitrogen (NH 4 + , NO 2 - , NO 3 - ) was attained after 4–6 h withPhormidium immobilized on chitosan flakes, as compared to 30% with chitosan flakes alone (5 g d. wt.·l-1). The system gave a similar performance when operated semi-continuously over 5 days at a daily retention time of 1.0. In the presence of chitosan-immobilized algae, medium P–PO 4 3- levels were reduced by 87.3%±6.4% after 24 h (61.1 g±7.0 g P·l-1·h-1). The reduction of inorganic nitrogen in the medium was 98% after 24 h (370 g±50 g N·l-1·h-1). In the presence of chitosan alone, some 60% orthophosphate removal was recorded, whereas no reduction of nitrogen was observed. Disappearance of orthophosphate was attributed to its co-precipitation with calcium released from the chitosan by abrasion. The presence of the algae protected the chitosan from abrasion andPhormidium directly assimilated the orthophosphate and inorganic nitrogen, thus reducing their levels in the effluent.  相似文献   

18.
Summary Porcine distal colon epithelium was mounted in Ussing chambers and bathed in plasma-like Ringer solution. Tissue conductances ranged from 10 to 15 mS and the short-circuit current (Isc) ranged from-15 to 220 A·cm-2. Variations in basal Isc resulted from differences in the amount of amiloride (10M mucosal addition)-sensitive Na+ absorption. Ion substitution and transepithelial flux experiments showed that 10 M amiloride produced a decrease in the mucosal-to-serosal (M-S) and net Na flux, and that this effect on Isc was independent of Cl- and HCO 3 - replacement. When the concentration of mucosal amiloride was increased from 10 to 100 M, little change in Isc was observed. However, increasing the concentration to 1 mM produced a further inhibition, which often reversed the polarity of the Isc. The decrease in Isc due to 1 mM amiloride was dependent on both Cl- and HCO 3 - , and was attributed to reductions in the M-S and net Na+ fluxes as well as the M-S unidirectional Cl- flux. Ion replacement experiments demonstrated that Cl- substitution reduced the M-S and net Na fluxes, while replacement of HCO 3 - with HEPES abolished net Cl- absorption by reducing the M-S unidirectional Cl- flux. From these data it can be concluded that: (1) Na+ absorption is mediated by two distinct amiloride-sensitive transport pathways, and (2) Cl- absorption is completely HCO 3 - -dependent (presumably mediated by Cl-/HCO 3 - exchange) and occurs independently of Na+ absorption.Abbreviations Gt tissue conductance - HEPES tris (hydroxymethyl) aminomethane - (tris) N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Isc short-circuit current - Jr residual flux - M-S mucosal-to-scrosal - S-M serosal-to-mucosal - TTX tetrodotoxin  相似文献   

19.
Summary We compared ammonium and nitrate nutrition in Eriophorum scheuchzeri and E. vaginatum, two Alaskan sedges that are native to high- and low-fertility sites, respectively. When grown in solution culture, the two species were similar in their kinetics of NH inf4 sup+ NO inf3 sup- absorption: at nitrogen concentrations below 50 M, net NH inf4 sup+ and NO inf3 sup- were absorbed at similar rates, but at higher concentrations, net uptake of NO inf3 sup- was significantly faster than that of NH inf4 sup+ . The two species also showed similar abilities to assimilate NO inf3 sup- . Growth of E. vaginatum under NO inf3 sup- nutrition was only slightly less than that under NH inf4 sup+ . The observed similarities between these species from contrasting edaphic habitats indicate that factors other than tissue-specific rates of nitrogen acquisition and assimilation may underlie local adaptation to soil N fertility. Moreover, the capacity of these species to exploit NO inf3 sup- as a N source supports the view that NO inf3 sup- availability may be significant even in wet, acidic, arctic soils.  相似文献   

20.
Summary Two annual species of Bromus, an invader (B. hordeaceus, ex B. mollis) and a non-invader (B. intermedius), were grown for 28 days in growth chambers, at 5 and 100 M NO 3 - in flowing nutrient solution. No differences between the two species were observed at either NO 3 - level, in terms of relative growth rate (RGR) or its components, dry matter partitioning, specific NO 3 - absorption rate, nitrogen concentration, and other characteristics of NO 3 - uptake and photosynthesis. The effects of decreasing NO 3 - concentration in the solution were mainly to decrease the NO 3 - concentration in the plants through decreased absorption rate, and to decrease the leaf area ratio through increased specific leaf mass and decreased leaf mass ratio. Organic nitrogen concentration varied little between the two treatments, which may be the reason why photosynthetic rates were not altered. Consequently, RGR was only slightly decreased in the 5-M treatment compared to the 100-M treatment. This is in contrast with other species, where growth is reduced at much higher NO 3 - concentrations. These discrepancies may be related to differences in RGR, since a log-linear relationship was found between RGR and the NO 3 - concentration at which growth is first reduced. In addition, a strong linear relationship was found between the RGR of these species and their maximum absorption rate for nitrate, suggesting that the growth of species with low maximum RGR may be partly regulated by nutrient uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号