首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Plesiomonas shigelloides is a Gram-negative bacterium associated with waterborne infections, which is common in tropical and subtropical habitats. Contrary to the unified antigenic classification of P. shigelloides, data concerning the structure and activity of their lipopolysaccharides (LPS and endotoxin) are limited. This study completes the structural investigation of phenol- and water-soluble fractions of P. shigelloides O74 (strain CNCTC 144/92) LPS with the emphasis on lipid A heterogeneity, describing the entire molecule and some of its biological in vitro activities. Structures of the lipid A and the affinity-purified decasaccharide obtained by de-N,O-acylation of P. shigelloides O74 LPS were elucidated by chemical analysis combined with electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)), MALDI-TOF MS, and NMR spectroscopy. Lipid A of P. shigelloides O74 is heterogeneous, and three major forms have been identified. They all were asymmetric, phosphorylated, and hexaacylated, showing different acylation patterns. The beta-GlcpN4P-(1-->6)-alpha-GlcpN1P disaccharide was substituted with the primary fatty acids: (R)-3-hydroxytetradecanoic acid [14:0(3-OH)] at N-2 and N-2' and (R)-3-hydroxydodecanoic acid [12:0(3-OH)] at O-3 and O-3'. The heterogeneity among the three forms (I-III) of P. shigelloides O74 lipid A was attributed to the substitution of the acyl residues at N-2' and O-3' with the secondary acyls: (I) cis-9-hexadecenoic acid (9c-16:1) at N-2' and 12:0 at O-3', (II) 14:0 at N-2' and 12:0 at O-3', and (III) 12:0 at N-2' and 12:0 at O-3'. The pro-inflammatory cytokine-inducing activities of P. shigelloides O74 LPS were similar to those of Escherichia coli O55 LPS.  相似文献   

2.
The structure of the core oligosaccharide moiety of the lipopolysaccharide (LPS) of Plesiomonas shigelloides O54 (strain CNCTC 113/92) has been investigated by (1)H and (13)C NMR, fast atom bombardment mass spectrometry (MS)/MS, matrix-assisted laser-desorption/ionization time-of-flight MS, monosaccharide and methylation analysis, and immunological methods. It was concluded that the main core oligosaccharide of this strain is composed of a decasaccharide with the following structure: (see text) in which l-alpha-D-Hepp is l-glycero-alpha-D-manno-heptopyranose. The nonasaccharide variant of the core oligosaccharide ( approximately 10%), devoid of beta-D-Glcp substituting the alpha-D-GlcpN at C-6, was also identified. The core oligosaccharide substituted at C-4 of the outer core beta-D-Glcp residue with the single O-polysaccharide repeating unit was also isolated yielding a hexadecasaccharide structure. The determination of the monosaccharides involved in the linkage between the O-specific polysaccharide part and the core, as well as the presence of -->3)-D-beta-D-Hepp-(1--> instead of -->3,4)-D-beta-D-Hepp-(1--> in the repeating unit, revealed the structure of the biological repeating unit of the O-antigen. The core oligosaccharides are not substituted by phosphate residues and represent novel core type of bacterial LPS that is characteristic for the Plesiomonas shigelloides serotype O54. Serological screening of 69 different O-serotypes of P. shigelloides suggests that epitopes similar to the core oligosaccharide of serotype O54 (strain CNCTC 113/92) might also be present in the core region of the serotypes O24 (strain CNCTC 92/89), O37 (strain CNCTC 39/89) and O96 (strain CNCTC 5133) LPS.  相似文献   

3.
Plesiomonas shigelloides is a Gram-negative rod associated with episodes of intestinal infections and outbreaks of diarrhea in humans. The extraintestinal infections caused by this bacterium, for example, endopthalmitis, meningitidis, bacteremia, and septicemia, usually have gastrointestinal origin and serious course. The lipopolysaccharide (LPS, endotoxin) as virulence factor is important in enteropathogenicity of this bacterium. LPSs of P. shigelloides and especially their lipid A part, that is, the immunomodulatory center of LPS, have not been extensively investigated. The structure of P. shigelloides O54 lipid A was determined by chemical analysis combined with MALDI-TOF mass spectrometry, and the intact Kdo-containing core region was investigated by NMR spectroscopy on deacylated LPS. Products from alkaline deacylation of LPS, containing 4-substituted uronic acids, are usually very complex and difficult to separate. Since Kdo residues, like sialic acids, form complexes with serotonin, we used immobilized serotonin for one-step isolation of oligosaccharide containing the intact Kdo region from the reaction mixture by affinity chromatography. The major form of lipid A was built of beta-d-GlcpN4PPEtn-(1-->6)-alpha-d-GlcpN1P disaccharide substituted with 14:0(3-OH), 12:0(3-OH), 14:0(3-O-14:0), and 12:0(3-O-12:0) acyl groups at N-2, O-3, N-2', and O-3', respectively. This is a novel structure among known lipid A molecules. Analysis of intact Kdo-lipid A region, lipid A and its linkage with the core oligosaccharide completes the structural investigation of P. shigelloides O54 LPS, resolving the entire molecule. Biological activities and observed discrepancy between in vitro and in vivo activity of P. shigelloides and Escherichia coli LPS are discussed.  相似文献   

4.
The structure of the O-specific side chain of the lipopolysaccharide (LPS) of Plesiomonas shigelloides, strain CNCTC 113/92 has been investigated by NMR spectroscopy, matrix-assisted laser desorption/ionization time of flight mass spectrometry and sugar and methylation analysis. It was concluded that the polysaccharide is composed of a hexasaccharide repeating unit with the following structure: in which D-beta-D-Hepp is Dglycero-beta-Dmanno-heptopyranose and 6d-beta-D-Hep is 6-deoxy-beta-Dmanno-heptopyranose. This structure represents a novel hexasaccharide repeating unit of bacterial O-antigen that is characteristic and unique to the Plesiomonas shigelloides strain. Using the high-resolution magic angle spinning technique, 1H-NMR spectra were also obtained for the O-polysaccharide components of isolated LPS and in their original form directly on the surface of bacterial cells.  相似文献   

5.
Plesiomonas shigelloides is a Gram-negative opportunistic pathogen associated with gastrointestinal and extraintestinal infections, which especially invades immunocompromised patients and neonates. The lipopolysaccharides are one of the major virulence determinants in Gram-negative bacteria and are structurally composed of three different domains: the lipid A, the core oligosaccharide and the O-antigen polysaccharide.In the last few years we elucidated the structures of the O-chain and the core oligosaccharide from the P. shigelloides strain 302-73. In this paper we now report the characterization of the linkage between the core and the O-chain. The LPS obtained after PCP extraction contained a small number of O-chain repeating units. The product obtained by hydrazinolysis was analysed by FTICR-ESIMS and suggested the presence of an additional Kdo in the core oligosaccharide. Furthermore, the LPS was hydrolysed under mild acid conditions and a fraction that contained one O-chain repeating unit linked to a Kdo residue was isolated and characterized by FTICR-ESIMS and NMR spectroscopy. Moreover, after an alkaline reductive hydrolysis, a disaccharide α-Kdo-(2→6)-GlcNol was isolated and characterized. The data obtained proved the presence of an α-Kdo in the outer core and allowed the identification of the O-antigen biological repeating unit as well as its linkage with the core oligosaccharide.  相似文献   

6.
The O-specific polysaccharide isolated by mild acid degradation of the lipopolysaccharide of Y. kristensenii strain 490 (O:12,25) contained D-glucose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose, glycerol, and phosphate in the ratios 2:2:1:1:1:1. On the basis of 31P- and 13C-n.m.r. data, methylation analysis, dephosphorylation, solvolysis with anhydrous hydrogen fluoride, and Smith degradation, it was concluded that the repeating unit of the polysaccharide was a branched hexaosylglycerol phosphate with the following structure. [formula: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号