首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Type III restriction endonuclease designated PstII has been purified from Providencia stuartii. PstII recognizes the hexanucleotide sequence 5′-CTGATG(N)25-26/27-28-3′. Endonuclease activity requires a substrate with two copies of the recognition site in head-to-head repeat and is dependent on a low level of ATP hydrolysis (~40 ATP/site/min). Cleavage occurs at just one of the two sites and results in a staggered cut 25–26 nt downstream of the top strand sequence to generate a two base 5′-protruding end. Methylation of the site occurs on one strand only at the first adenine of 5′-CATCAG-3′. Therefore, PstII has characteristic Type III restriction enzyme activity as exemplified by EcoPI or EcoP15I. Moreover, sequence asymmetry of the PstII recognition site in the T7 genome acts as an historical imprint of Type III restriction activity in vivo. In contrast to other Type I and III enzymes, PstII has a more relaxed nucleotide specificity and can cut DNA with GTP and CTP (but not UTP). We also demonstrate that PstII and EcoP15I cannot interact and cleave a DNA substrate suggesting that Type III enzymes must make specific protein–protein contacts to activate endonuclease activity.  相似文献   

2.
Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction–modification (R–M) systems are classified into four groups. Type III R–M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25–27 bp downstream of one of the recognition sites). Like the Type I R–M enzymes, Type III R–M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R–M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R–M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.  相似文献   

3.
Type I restriction-modification (R-M) enzymes are composed of three different subunits, of which HsdS determines DNA specificity, HsdM is responsible for DNA methylation and HsdR is required for restriction. The HsdM and HsdS subunits can also form an independent DNA methyltransferase with a subunit stoichiometry of M2S1. We found that the purified Eco R124I R-M enzyme was a mixture of two species as detected by the presence of two differently migrating specific DNA-protein complexes in a gel retardation assay. An analysis of protein subunits isolated from the complexes indicated that the larger species had a stoichiometry of R2M2S1and the smaller species had a stoichiometry of R1M2S1. In vitro analysis of subunit assembly revealed that while binding of the first HsdR subunit to the M2S1complex was very tight, the second HsdR subunit was bound weakly and it dissociated from the R1M2S1complex with an apparent K d of approximately 2.4 x 10(-7) M. Functional assays have shown that only the R2M2S1complex is capable of DNA cleavage, however, the R1M2S1complex retains ATPase activity. The relevance of this situation is discussed in terms of the regulation of restriction activity in vivo upon conjugative transfer of a plasmid-born R-M system into an unmodified host cell.  相似文献   

4.
Phosphorylation of Type I restriction-modification (R-M) enzymes EcoKI, EcoAI, and EcoR124I - representatives of IA, IB, and IC families, respectively - was analysed in vivo by immunoblotting of endogenous phosphoproteins isolated from Escherichia coli strains harbouring the corresponding hsd genes, and in vitro by a phosphorylation assay using protein kinase present in subcellular fractions of E. coli. From all three R-M enzymes, the HsdR subunit of EcoKI system was the only subunit that was phosphorylated. Further, evidence is presented that HsdR is phosphorylated in vivo only when coproduced with HsdM and HsdS subunits - as part of assembled EcoKI restriction endonuclease, while the individually produced HsdR subunit is not phosphorylated. In vitro phosphorylation of the HsdR subunit of purified EcoKI endonuclease occurs on Thr, and is strictly dependent on the addition of a catalytic amount of cytoplasmic fraction isolated from E. coli. So far this is the first case of phosphorylation of a Type I R-M enzyme reported.  相似文献   

5.
EcoP15I is the prototype of the Type III restriction enzyme family, composed of two modification (Mod) subunits to which two (or one) restriction (Res) subunits are then added. The Mod subunits are responsible for DNA recognition and methylation, while the Res subunits are responsible for ATP hydrolysis and cleavage. Despite extensive biochemical and genetic studies, there is still no structural information on Type III restriction enzymes. We present here small-angle X-ray scattering (SAXS) and analytical ultracentrifugation analysis of the EcoP15I holoenzyme and the Mod(2) subcomplex. We show that the Mod(2) subcomplex has a relatively compact shape with a radius of gyration (R(G)) of ~37.4 ? and a maximal dimension of ~110 ?. The holoenzyme adopts an elongated crescent shape with an R(G) of ~65.3 ? and a maximal dimension of ~218 ?. From reconstructed SAXS envelopes, we postulate that Mod(2) is likely docked in the middle of the holoenzyme with a Res subunit at each end. We discuss the implications of our model for EcoP15I action, whereby the Res subunits may come together and form a "sliding clamp" around the DNA.  相似文献   

6.
The BcgI restriction-modification system consists of two subunits, A and B. It is a bifunctional protein complex which can cleave or methylate DNA. The regulation of these competing activities is determined by the DNA substrates and cofactors. BcgI is an active endonuclease and a poor methyltransferase on unmodified DNA substrates. In contrast, BcgI is an active methyltransferase and an inactive endonuclease on hemimethylated DNA substrates. The cleavage and methylation reactions share cofactors. While BcgI requires Mg2+and S -adenosyl methionine (AdoMet) for DNA cleavage, its methylation reaction requires only AdoMet and yet is significantly stimulated by Mg2+. Site-directed mutagenesis was carried out to investigate the relationship between AdoMet binding and BcgI DNA cleavage/methylation activities. Most substitutions of conserved residues forming the AdoMet binding pocket in the A subunit abolished both methylation and cleavage activities, indicating that AdoMet binding is an early common step required for both cleavage and methylation. However, one mutation (Y439A) abolished only the methylation activity, not the DNA cleavage activity. This mutant protein was purified and its methylation, cleavage and AdoMet binding activities were tested in vitro . BcgI-Y439A had no detectable methylation activity, but it retained 40% of the AdoMet binding and DNA cleavage activities.  相似文献   

7.
Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio of type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.  相似文献   

8.
Lectins are a structurally diverse group of carbohydrate recognizing proteins that are involved in various biological processes and exhibit substantial structural diversity. Interestingly, in spite of having varied carbohydrate-binding specificities, they show modest variation in their secondary and tertiary structure. However, very similar tertiary folds give rise to a range of quaternary structures by simply varying the mutual orientations of the subunits involved. The variety in the quaternary structure generates multivalency in sugar specificities among lectins along with the requisite surface topology to allow for unobstructed recognition events.  相似文献   

9.
Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.  相似文献   

10.
The presence of DNA-unwinding elements (DUEs) at eukaryotic replicators has raised the question of whether these elements contribute to origin activity by their intrinsic helical instability, as protein-binding sites, or both. We used the human c-myc DUE as bait in a yeast one-hybrid screen and identified a DUE-binding protein, designated DUE-B, with a predicted mass of 23.4 kDa. Based on homology to yeast proteins, DUE-B was previously classified as an aminoacyl-tRNA synthetase; however, the human protein is approximately 60 amino acids longer than its orthologs in yeast and worms and is primarily nuclear. In vivo, chromatin-bound DUE-B localized to the c-myc DUE region. DUE-B levels were constant during the cell cycle, although the protein was preferentially phosphorylated in cells arrested early in S phase. Inhibition of DUE-B protein expression slowed HeLa cell cycle progression from G1 to S phase and induced cell death. DUE-B extracted from HeLa cells or expressed from baculovirus migrated as a dimer during gel filtration and co-purified with ATPase activity. In contrast to endogenous DUE-B, baculovirus-expressed DUE-B efficiently formed high molecular mass complexes in Xenopus egg and HeLa extracts. In Xenopus extracts, baculovirus-expressed DUE-B inhibited chromatin replication and replication protein A loading in the presence of endogenous DUE-B, suggesting that differential covalent modification of these proteins can alter their effect on replication. Recombinant DUE-B expressed in HeLa cells restored replication activity to egg extracts immunodepleted with anti-DUE-B antibody, suggesting that DUE-B plays an important role in replication in vivo.  相似文献   

11.
Bacterial flagella, unlike eukaryotic flagella, are largely external to the cell and therefore many of their subunits have to be exported. Export is ATP-driven. In Salmonella, the bacterium on which this chapter largely focuses, the apparatus responsible for flagellar protein export consists of six membrane components, three soluble components and several substrate-specific chaperones. Other flagellated eubacteria have similar systems. The membrane components of the export apparatus are housed within the flagellar basal body and deliver their substrates into a channel or lumen in the nascent structure from which point they diffuse to the far end and assemble. Both on the basis of sequence similarities of several components and structural similarities, the flagellar protein export systems clearly belong to the type III superfamily, whose other members are responsible for secretion of virulence factors by many species of pathogenic bacteria.  相似文献   

12.
To localise the type I restriction-modification (R-M) enzyme EcoKI within the bacterial cell, the Hsd subunits present in subcellular fractions were analysed using immunoblotting techniques. The endonuclease (ENase) as well as the methylase (MTase) were found to be associated with the cytoplasmic membrane. HsdR and HsdM subunits produced individually were soluble, cytoplasmic polypeptides and only became membrane-associated when coproduced with the insoluble HsdS subunit. The release of enzyme from the membrane fraction following benzonase treatment indicated a role for DNA in this interaction. Trypsinization of spheroplasts revealed that the HsdR subunit in the assembled ENase was accessible to protease, while HsdM and HsdS, in both ENase and MTase complexes, were fully protected against digestion. We postulate that the R-M enzyme EcoKI is associated with the cytoplasmic membrane in a manner that allows access of HsdR to the periplasmic space, while the MTase components are localised on the inner side of the plasma membrane.  相似文献   

13.
It is known that the level of dietary protein modulates the enzymatic activity of the digestive tract of fish; however, its effect at the molecular level on these enzymes and the hormones regulating appetite has not been well characterised. The objective of this study was to evaluate the effect of CP on the activity of proteases and the expression of genes related to the ingestion and protein digestion of juveniles of red tilapia (Oreochromis sp.), as well as the effects on performance, protein retention and body composition of tilapia. A total of 240 juveniles (29.32 ± 5.19 g) were used, distributed across 20 tanks of 100 l in a closed recirculation system. The fish were fed to apparent satiety for 42 days using four isoenergetic diets with different CP levels (24%, 30%, 36% and 42%). The results indicate that fish fed the 30% CP diet exhibited a higher growth performance compared to those on the 42% CP diet (P < 0.05). Feed intake in fish fed 24% and 30% CP diets was significantly higher than that in fish fed 36% and 42% CP diets (P < 0.05). A significant elevation of protein retention was observed in fish fed with 24% and 30% CP diets. Fish fed with 24% CP exhibited a significant increase in lipid deposition in the whole body. The diet with 42% CP was associated with the highest expression of pepsinogen and the lowest activity of acid protease (P < 0.05). The expression of hepatopancreatic trypsinogen increased as CP levels in the diet increased (P < 0.05) up to 36%, whereas trypsin activity showed a significant reduction with 42% CP (P < 0.05). The diet with 42% CP was associated with the lowest intestinal chymotrypsinogen expression and the lowest chymotrypsin activity (P < 0.05). α-amylase expression decreased with increasing (P < 0.05) CP levels up to 36%. No significant differences were observed in the expression of procarboxypeptidase, lipase or leptin among all the groups (P > 0.05). In addition, the diet with 42% CP resulted in a decrease (P < 0.05) in the expression of ghrelin and insulin and an increase (P < 0.05) in the expression of cholecystokinin and peptide yy. It is concluded that variation in dietary protein promoted changes in the metabolism of the red tilapia, which was reflected in proteolytic activity and expression of digestion and appetite-regulating genes.  相似文献   

14.
EcoP1 is a restriction modification enzyme encoded by bacteriophage P1. It requires ATP for cleavage and S-adenosyl methionine for methylation of DNA. We have mapped the sites of both cleavage and methylation in simian virus 40 DNA and determined their sequences. The enzyme methylates the sequence A-G-mA-C-C and cuts the DNA 25 to 27 base-pairs from the site of methylation in the 3′ direction, with a two to four base-pair stagger between cuts. Consistent with the fact that the methylation sequence is asymmetric, the enzyme methylates only one strand in vitro. One variant of simian virus 40 has acquired an additional EcoP1 methylation and cleavage site by changing a A-G-A-A-C sequence to A-G-A-C-C.  相似文献   

15.
The HsdS subunit of a type I restriction-modification (R-M) system plays an essential role in the activity of both the modification methylase and the restriction endonuclease. This subunit is responsible for DNA binding, but also contains conserved amino acid sequences responsible for protein-protein interactions. The most important protein-protein interactions are those between the HsdS subunit and the HsdM (methylation) subunit that result in assembly of an independent methylase (MTase) of stoichiometry M(2)S(1). Here, we analysed the impact on the restriction and modification activities of the change Trp(212)-->Arg in the distal border of the central conserved region of the EcoR124I HsdS subunit. We demonstrate that this point mutation significantly influences the ability of the mutant HsdS subunit to assemble with the HsdM subunit to produce a functional MTase. As a consequence of this, the mutant MTase has drastically reduced DNA binding, which is restored only when the HsdR (restriction) subunit binds with the MTase. Therefore, HsdR acts as a chaperon allowing not only binding of the enzyme to DNA, but also restoring the methylation activity and, at sufficiently high concentrations in vitro of HsdR, restoring restriction activity.  相似文献   

16.
In vitro activities of tachyplesin III against Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
The in vitro activities of tachyplesin III were investigated against 20 multidrug-resistant Pseudomonas aeruginosa clinical isolates. Methods included minimal inhibitory concentrations, minimal bactericidal concentrations, time-kill studies, checkerboard titration method, endotoxin-binding activity and cytotoxicity assay. Overall the organisms were susceptible to the peptide at concentrations of 0.50-4 mg/l. Tachyplesin III completely inhibits the endotoxin procoagulant activity at 22.36 mg/l concentration. Fractional inhibitory concentration indexes demonstrated synergy between the peptide and betalactams or colistin. In conclusion, the intrinsic antibacterial and antiendotoxin activities and the synergistic interactions demonstrated with clinically used antibiotics make tachyplesin III valuable as potential candidate for new therapeutic strategies aimed to treat P. aeruginosa infection.  相似文献   

17.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

18.
This study compared the effects of dietary whey protein with dietary casein or soy protein on glycogen storage and glycoregulatory enzyme activities in the liver of sedentary and exercise-trained rats. Male Sprague-Dawley rats (ca. 130 g) were divided into one sedentary and three exercise-trained groups, with eight animals in each group. Casein was provided as the source of dietary protein in the sedentary group while the exercise-trained groups were fed casein, whey, or soy protein. Rats in the exercise-trained groups ran for 30 mins/day, 4 days/week on a motor-driven treadmill. In the exercise-trained rats, animals fed whey protein had higher liver glycogen content than animals in the other two diet groups. Glucokinase activity was significantly higher in rats fed whey protein compared to that in rats fed soy protein, while glucose 6-phosphatase activity was significantly decreased in animals on the whey protein diet compared with those the other two diets. Although 6-phospho-fructokinase activity was significantly lower in the whey protein group than in the soy protein group, we found that fructose 1,6-bisphosphatase activity was significantly higher in the whey group compared with either the casein or soy groups. Pyruvate kinase activity in rats fed the casein diet was significantly higher than in rats fed either the whey or soy protein diets. In addition, hepatic alanine aminotransferase activity and serum alanine level were also increased in the whey protein group compared with the casein or soy protein groups. Taken together, these results demonstrate that the whey protein diet in exercise-trained rats results in significantly higher levels of liver glycogen, because of the combined effects of regulation of rate limiting glycolytic and gluconeogenic enzyme activities and activation of glycogenesis from alanine via alanine amino-transferase.  相似文献   

19.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号