首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis to various tumor cells but not in normal cells. We have screened cell death-inducing peptides from the extracellular domain sequence of TRAIL, using a peptide array. Peptides of higher activity were found through amino acid substitution, and the CNSCWSKD peptide induced >90% cell death in treated Jurkat cells. Features of apoptosis, such as DNA fragmentation, activation of caspase, phosphatidylserine externalization, chromatin condensation, and competition with TRAIL for binding to the death receptor (DR) 4 or DR5 were observed, suggesting that this peptide is a TRAIL mimic. Caspase-3 activation was observed in various tumor cells treated with this peptide as well as with TRAIL, while no activation was observed in human normal fibroblasts. The CNSCWSKD peptide is a potential candidate for use in cancer therapy.  相似文献   

2.
3.
TRAIL death pathway expression and induction in thyroid follicular cells.   总被引:25,自引:0,他引:25  
To determine whether programmed cell death in thyroid follicular cells can be related to activation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway, we examined the expression and function of this pathway in primary thyroid follicular cells and a papillary thyroid carcinoma cell line in vitro. Despite the expression of TRAIL receptors death receptor 4 and death receptor 5, purified TRAIL could not induce programmed cell death (PCD) in any of the thyroid follicular cells examined. However, pre-incubation with cycloheximide before TRAIL facilitated the induction of rapid and massive PCD. This suggested that despite the presence of a labile inhibitor of the TRAIL pathway, TRAIL could mediate PCD under appropriate conditions. To determine whether there were sources of TRAIL in the thyroid that could interact with thyroid follicular cell TRAIL receptors, RNase protection assays were used to determine TRAIL mRNA expression. TRAIL message was expressed in intrathyroidal lymphocytes isolated from a patient with thyroiditis, and unexpectedly, thyroid follicular cells themselves could be induced to express abundant TRAIL message in the presence of the inflammatory cytokines interferon gamma, tumor necrosis factor alpha, and interleukin 1beta. Furthermore, the papillary thyroid carcinoma cell line could be induced to kill the TRAIL-sensitive lymphoma cell line BJAB through a TRAIL-dependent mechanism.  相似文献   

4.
Current advances and expectations in tumor immunology]   总被引:7,自引:0,他引:7  
K Takeda  K Okumura 《Human cell》2001,14(3):159-163
Natural killer (NK) cells and Interferon (IFN)-gamma have been implicated in immune surveillance against tumor. We demonstrated the critical role of perforin in NK cell-mediated cytotoxic activity and anti-tumor effect in IFN-gamma inducible IL-12. And, we recently reported that TRAIL is constitutively expressed on a substantial proportion of murine NK cells in the liver, and which is responsible for spontaneous cytotoxicity and the anti-metastatic activity against TRAIL-sensitive tumor cells along with perforin and Fas ligand. Interestingly, the TRAIL expression on liver NK cells appeared to be regulated by endogenously produced IFN-gamma. Consisting with this finding, IL-12 and NKT cell specific ligand, alpha-Galactosylceramide (alpha-GalCer), induced TRAIL-mediated cytotoxcity and anti-tumor effect, and which was mediated by TRAIL expressed on IFN-gamma-activated NK cells. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF family, which preferentially induces apoptotic cell death in various tumor cells in vitro. Preclinical studies in mice and nonhuman primates have shown that administration of recombinant soluble forms of TRAIL could suppress the growth of TRAIL-sensitive tumor xenografts with no apparent systemic toxicity. These studies suggested a potential utility of TRAIL as a cancer therapeutic, although TRAIL expression at protein levels and its physiological roles in tumor surveillance has remained unknown. Presented findings provide the first evidence for the physiological function of TRAIL as a tumor suppressor.  相似文献   

5.
Here we show a novel mechanism by which FLICE-like inhibitory protein (c-FLIP) regulates apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and one of its receptors, DR5. c-FLIP is a critical regulator of the TNF family of cytokine receptor signaling. c-FLIP has been postulated to prevent formation of the competent death-inducing signaling complex (DISC) in a ligand-dependent manner, through its interaction with FADD and/or caspase-8. In order to identify regulators of TRAIL function, we used the intracellular death domain (DD) of DR5 as a target to screen a phage-displayed combinatorial peptide library. The DD of DR5 selected from the library a peptide that showed sequence similarity to a stretch of amino acids in the C terminus of c-FLIP(L). The phage-displayed peptide selectively interacted with the DD of DR5 in in vitro binding assays. Similarly, full-length c-FLIP (c-FLIP(L)) and the C-terminal p12 domain of c-FLIP interacted with DR5 both in in vitro pull-down assays and in mammalian cells. This interaction was independent of TRAIL. To the contrary, TRAIL treatment released c-FLIP(L) from DR5, permitting the recruitment of FADD to the active DR5 signaling complex. By employing FADD-deficient Jurkat cells, we demonstrate that DR5 and c-FLIP(L) interact in a FADD-independent manner. Moreover, we show that a cellular membrane permeable version of the peptide corresponding to the DR5 binding domain of c-FLIP induces apoptosis in mammalian cells. Taken together, these findings indicate that c-FLIP interacts with the DD of DR5, thus preventing death (L)signaling by DR5 prior to the formation of an active DISC. Because TRAIL and DR5 are ubiquitously expressed, the interaction of c-FLIP(L) and DR5 indicates a mechanism by which tumor selective apoptosis can be achieved through protecting normal cells from undergoing death receptor-induced apoptosis.  相似文献   

6.
Cationic lytic‐type peptides have been studied for clinical application in various infections and cancers, but their functional cellular mechanisms remain unclear. We generated anti‐cancer epithelial growth factor receptor (EGFR)‐lytic hybrid peptide, a 32‐amino‐acid peptide composed of an EGFR‐binding sequence and lytic sequence. In this study, we investigated the distribution of EGFR‐lytic hybrid peptide in BxPC‐3 human pancreatic cancer cells by an immunocytochemical (ICC) method. Distribution of EGFR protein expression was unchanged after treatment with EGFR‐lytic peptide compared with non‐treated cells. In confocal laser scanning microscopy, immunostaining of EGFR‐lytic peptide was observed in the cytoplasm, mostly in the form of granules. Some staining was also localized on the mitochondrial membrane. At the ultrastructure level, cells treated with EGFR‐lytic peptide had a low electron density, disappearance of microvilli, and swollen mitochondria. Fragments of cell membrane were also observed in the proximity of the membrane. In immunoelectron microscopy, EGFR‐lytic peptide was observed in the cell membrane and cytoplasm. A number of granules were considered swollen mitochondria. Activation of the caspase pathway as a result of mitochondrial dysfunction was also examined to determine the cytotoxic activity of EGFR‐lytic peptide; however, no effect on cell death after EGFR‐lytic treatment was observed, and moreover, apoptosis was not found to play a critical role in the cell death mechanism. These results suggest that EGFR‐lytic peptide is localized on cell and mitochondrial membranes, with disintegration of the cell membrane contributing mainly to cell death. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).  相似文献   

8.
Injection of heat-killed bacteria into larvae of the large tenebrionid beetle Zophobas atratus (Insecta, Endopterygota, Coleoptera) results in the appearance in the hemolymph of a potent antibacterial activity as evidenced by a plate growth inhibition assay. We have isolated three peptides (A-C) from this immune hemolymph which probably account for most of this activity. Their primary structures were established by a combination of peptide sequencing and molecular mass determination by mass spectrometry. Peptide A, which is bactericidal against Gram-negative cells, is a 74-residue glycine-rich molecule with no sequence homology to known peptides. We propose the name coleoptericin for this novel inducible antibacterial peptide. Peptides B and C are isoforms of a 43-residue peptide which contains 6 cysteines and shows significant sequence homology to insect defensins, initially reported from dipteran insects. This peptide is active against Gram-positive bacteria. The results are discussed in connection with recent studies on inducible antibacterial peptides present in the three other major orders of the endopterygote clade of insects: the Lepidoptera, Diptera, and Hymenoptera.  相似文献   

9.
Model studies have shown that peptides derived from the N-terminal region of bovine lactoferrin (Lf-B) exhibit antitumor activity against certain cell lines. This activity is due primarily to the peptides' apoptogenic effect. Several reports indicate that cationic residues clustered in two regions of the peptide sequence can be shuffled into one region and thereby increase cytotoxic activity, although the mechanism of this enhanced cytotoxic effect has not been clarified. In this paper, we considered several parameters that determine the mode of cell death after exposure to a native Lf-B derived peptide (Pep1, residues 17-34), and a modified peptide (mPep1) wherein the cationic residues of Pep1 are clustered in a single region of its helical structure. We found that the cytotoxic activity of mPep1 was about 9.6 fold-higher than that of Pep1 against HL-60 cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay. In investigating the expression of phosphatidylserine, we observed that the native peptide (Pep1) caused both apoptotic cell death and necrotic cell death, depending on the concentration of the peptide. In contrast, the action of mPep1 was exclusively characteristic of necrotic cell death. This observation was further confirmed by agarose gel electrophoresis, in which clear ladder-like DNA bands were observed from cells exposed to Pep1, whereas DNA from cells treated with mPep1 produced a smeared pattern. We extended the study by investigating the release of mitochondrial cytochrome c into the cytosol, and the activation of caspase-3; both peptides caused the release of cytochrome c into the cytosol, and the activation of caspase-3.These results suggest that Pep1 may kill cancer cells by activating an apoptosis-inducing pathway, whereas mPep1 causes necrotic cell death by destroying cellular membrane structure notwithstanding sharing some cellular events with apoptotic cell death. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
In this study, we demonstrated that survivin downregulation with TRAIL expression greatly enhanced the cytotoxic death of pancreatic cancer cells after gemcitabine treatment. Using real-time RT-PCR, we analyzed five survivin shRNAs to identify the best target sequence for suppression of human survivin, with the goal of treating gemcitabine-resistant pancreatic cancer cells. Survivin shRNA 5, corresponding to target 5, showed the greatest reduction in survivin mRNA levels. Furthermore, combined treatment with survivin shRNA-expressing adenovirus with gemcitabine plus TRAIL decreased uncleaved PARP and increased consequent PARP cleavage, which was correlated with the greatest levels of survivin downregulation and cell death. These results indicate that survivin functions as a common mediator of gemcitabine- and TRAIL-induced cell death. Using a nude mouse model implanted with MiaPaCa-2 pancreatic cancer cells, we observed tumor regression induced by an oncolytic adenovirus expressing survivin shRNA and TRAIL plus gemcitabine. Together, our findings provide a strong rationale for treating pancreatic cancer patients with both gemcitabine and oncolytic adenovirus armed with survivin shRNA and TRAIL.  相似文献   

11.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds great potential as an anticancer drug, since it induces selective cell death in cancer cells but not in normal ones. However, cancer cells often acquire resistance to TRAIL, which hinders its clinical efficacy. We previously demonstrated that progesterone triggers apoptosis in human ovarian cancer (OCa) cells. In the present study, we evaluated the prospect of utilizing progestins in combination with TRAIL to enhance cell death in TRAIL-sensitive (OVCA 420, OVCA 429, and OVCA 433) and -resistant (OVCA 432) OCa cell lines. TRAIL sensitivity (60-80% cell kill) bore no correlation with expression of the TRAIL receptors (DR4, DR5) or their decoys (DcR1 and DcR2), but was associated with activation of caspase-8 and -3, and downregulation of the long isoform of FLICE-like inhibitory protein (c-FLIP(L)), an anti-apoptosis mediator. Small interfering RNA-mediated knockdown of c-FLIP(L) expression restored TRAIL sensitivity in OVCA 432 cells. Induction of c-FLIP(L) overexpression increased TRAIL resistance in TRAIL-sensitive lines. Thus, persistent high level of c-FLIP(L) expression likely mediates TRAIL resistance in OCa cells. Treatment of OCa cells with progesterone enhanced TRAIL-induced cell death (>85%), but only in TRAIL-sensitive cell lines. Combined treatment with two progestins was superior to single progestin treatment, with progesterone plus medroxyprogesterone acetate (MPA) achieving over 85% cell kill in both TRAIL-sensitive and -resistant OCa cell lines. Significantly, unlike TRAIL, progestin-induced cell death did not involve c-FLIP(L) downregulation. Hence, combined progestin regimens, with or without TRAIL, may serve as an effective therapy for OCa by circumventing the anti-apoptotic action of c-FLIP(L).  相似文献   

12.
The present studies were performed to determine whether lysosomal permeabilization contributes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity and to reconcile a role for lysosomes with prior observations that Bcl-2 family members regulate TRAIL-induced apoptosis. In KMCH cholangiocarcinoma cells stably expressing Mcl-1 small interference RNA (siRNA), treatment with TRAIL induced a redistribution of the cathepsin B from lysosomes to the cytosol. Pharmacological and small hairpin RNA-targeted inhibition of cathepsin B attenuated TRAIL-mediated apoptosis as assessed by morphological, biochemical, and clonogenic assays. Neither Bid siRNA nor Bak siRNA prevented cathepsin B release. In contrast, treatment of the cells with Bim siRNA or the JNK inhibitor SP600125 attenuated lysosomal permeabilization and cell death. Moreover, Bim and active Bax co-localized to lysosomes in TRAIL-treated cells in a JNK-dependent manner, and Bax siRNA reduced TRAIL-induced lysosomal permeabilization and cell death. Finally, BH3 domain peptides permeabilized isolated lysosomes in the presence of Bax. Collectively, these data suggest that TRAIL can trigger an apoptotic pathway that involves JNK-dependent activation of Bim, which in turn induces Bax-mediated permeabilization of lysosomes.  相似文献   

13.
Silibinin, a flavonolignan, is the major active component of the milk thistle plant (Silybum marianum) and has been shown to possess anti-neoplastic properties. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent which selectively induces apoptosis in cancer cells. However, resistance to TRAIL-induced apoptosis is an important and frequent problem in cancer treatment. In this study, we investigated the effect of silibinin and TRAIL in an in vitro model of human colon cancer progression, consisting of primary colon tumor cells (SW480) and their derived TRAIL-resistant metastatic cells (SW620). We showed by flow cytometry that silibinin and TRAIL synergistically induced cell death in the two cell lines. Up-regulation of death receptor 4 (DR4) and DR5 by silibinin was shown by RT-PCR and by flow cytometry. Human recombinant DR5/Fc chimera protein that has a dominant-negative effect by competing with the endogenous receptors abrogated cell death induced by silibinin and TRAIL, demonstrating the activation of the death receptor pathway. Synergistic activation of caspase-3, -8, and -9 by silibinin and TRAIL was shown by colorimetric assays. When caspase inhibitors were used, cell death was blocked. Furthermore, silibinin and TRAIL potentiated activation of the mitochondrial apoptotic pathway and down-regulated the anti-apoptotic proteins Mcl-1 and XIAP. The involvement of XIAP in sensitization of the two cell lines to TRAIL was demonstrated using the XIAP inhibitor embelin. These findings demonstrate the synergistic action of silibinin and TRAIL, suggesting chemopreventive and therapeutic potential which should be further explored.  相似文献   

14.
Previous work from our laboratory has shown that coupling doxorubicin (Dox) to cell penetrating peptides (Dox–CPPs) is a good strategy to overcome Dox resistance in MDA-MB 231 breast cancer cells. We also reported that, in contrast to unconjugated Dox-induced cell death, the increase in apoptotic response does not involve the mitochondrial apoptotic pathway. In this study, we demonstrate that both Dox and Dox–CPPs can increase the density of the TRAIL receptors DR4 and DR5 at the plasma membrane and moderately sensitize MDA-MB 231 cells to exogeneously added recombinant TRAIL, as has already been shown for other chemotherapeutic drugs. Moreover, we show that Dox–CPPs, used alone, induce the clustering of TRAIL receptors into ceramide-enriched membrane lipid rafts, a property not shared by unconjugated Dox and that this process is due to the generation of ceramide during Dox–CPPs treatment. In addition, MDA-MB 231 cells were found to express TRAIL and we show that the increased apoptotic rate induced by Dox–CPPs is due to the sensitization of MDA-MB 231 cells to endogenous TRAIL. The capacity of Dox–CPPs to sensitize cancer cells to physiologic amounts of TRAIL suggests that, in addition to their efficiency in combination chemotherapy, these compounds might increase the response of tumor cells to cytotoxic lymphocyte-mediated killing via TRAIL.  相似文献   

15.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/death receptor 5 (DR5)-mediated cell death plays an important role in the elimination of tumor cells and transformed cells. Recently, recombinant TRAIL and agonistic anti-DR5 monoclonal antibodies have been developed and applied to cancer therapy. However, depending on the type of cancer, the sensitivity to TRAIL has been reportedly different, and some tumor cells are resistant to TRAIL-mediated apoptosis. Using confocal microscopy, we found that large amounts of DR5 were localized in the nucleus in HeLa and HepG2 cells. Moreover, these tumor cells were resistant to TRAIL, whereas DU145 cells, which do not have nuclear DR5, were highly sensitive to TRAIL. By means of immunoprecipitation and Western blot analysis, we found that DR5 and importin β1 were physically associated, suggesting that the nuclear DR5 was transported through the nuclear import pathway mediated by importin β1. Two functional nuclear localization signals were identified in DR5, the mutation of which abrogated the nuclear localization of DR5 in HeLa cells. Moreover, the nuclear transport of DR5 was also prevented by the knockdown of importin β1 using siRNA, resulting in the up-regulation of DR5 expression on the cell surface and an increased sensitivity of HeLa and HepG2 cells to TRAIL. Taken together, our findings suggest that the importin β1-mediated nuclear localization of DR5 limits the DR5/TRAIL-induced cell death of human tumor cells and thus can be a novel target to improve cancer therapy with recombinant TRAIL and anti-DR5 antibodies.  相似文献   

16.
Here we report that a novel member of the TNF-alpha family, TNF-related apoptosis-inducing ligand (TRAIL), contributes substantially to amyloid-induced neurotoxicity in human SH-SY5Y neuronal cell line. Involvement of TRAIL in the amyloid-induced cell death is supported by cDNA array, Northern blot, and Western blot data, demonstrating increased TRAIL expression after treatment of the cells with a neurotoxic fragment of amyloid protein (betaAP). TRAIL was also found to be released in the culture media after betaAP treatment with a time-course overlapping to contents of the intracellular protein. Contribution of TRAIL to betaAP neurotoxicity is demonstrated by data showing that TRAIL-neutralizing monoclonal antibody protects neuronal SH-SY5Y cells from betaAP neurotoxicity. Moreover, exposure of neuronal SH-SY5Y cells to TRAIL leads to cell death, indicating that this substance per se is endowed with neurotoxic properties. We also found that, similarly to betaAP and TRAIL, activation of the death-domain adaptor protein FADD results in neuronal cell death. Lack of FADD function, by overexpression of its dominant negative, rescued cells from either TRAIL- or betaAP-induced neurotoxicity, supporting the hypothesis that these three molecules share common intracellular pathways. Finally, we found that betaAP strongly activated caspase-8, and the cell-permeable, selective caspase-8 inhibitor z-IETD-FMK prevents both betaAP- and TRAIL-induced neurotoxicity. In view of TRAIL's potency in inducing neuronal death, and its role as mediator of betaAP, it is plausible to hypothesize that TRAIL can be regarded as a molecule that provides substantial contribution to betaAP-dependent cell death, which takes part in the progression of the neurodegenerative process and related chronic inflammatory response.  相似文献   

17.
A subset of tumour necrosis factor receptor family members is involved in death transducing signals and is, therefore, referred as the "death receptors." Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many tumour cells but only rarely in normal cells. Five distinct receptors have been described for TRAIL: TRAIL R1 (DR4), TRAIL R2 (DR5, TRICK), TRAIL R3 (TRID, DcR1), TRAIL R4 (TRUNDD, DcR2), and osteoprotegerin. In the Eighth International Workshop on Human Leukocyte Differentiation Antigens, 10 monoclonal antibodies (mAbs) reported to be specific for TRAIL or for TRAIL receptors were submitted. In the present study, the mAb specificity was determined by ELISA. Using these mAbs, investigation on the expression of TRAIL and TRAIL receptors was performed. Some of them were able to modulate TRAIL induced programmed cell death.  相似文献   

18.
PTPN4, a human tyrosine phosphatase, protects cells against apoptosis. This protection could be abrogated by targeting the PDZ domain of this phosphatase with a peptide mimicking the C-terminal sequence of the G protein of an attenuated rabies virus strain. Here, we demonstrate that glioblastoma death is triggered upon intracellular delivery of peptides, either from viral origin or from known endogenous ligands of PTPN4-PDZ, such as the C terminus sequence of the glutamate receptor subunit GluN2A. The killing efficiency of peptides closely reflects their affinities for the PTPN4-PDZ. The crystal structures of two PTPN4-PDZ/peptide complexes allow us to pinpoint the main structural determinants of binding?and to synthesize a peptide of high affinity for PTPN4-PDZ enhancing markedly its cell death capacity. These results allow us to propose a potential mechanism for the efficiency of peptides and provide a target and a robust framework for the design of new pro-death compounds.  相似文献   

19.
Ferroptosis is considered genetically and biochemically distinct from other forms of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death. When human colon cancer HCT116, CX-1, and LS174T cells were treated with ferroptotic agents such as sorafenib (SRF), erastin, and artesunate, data from immunoblot assay showed that ferroptotic agents induced endoplasmic reticulum (ER) stress and the ER stress response-mediated expression of death receptor 5 (DR5), but not death receptor 4. An increase in the level of DR5, which is activated by binding to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and initiates apoptosis, was probably responsible for synergistic apoptosis when cells were treated with ferroptotic agent in combination with TRAIL. This collateral effect was suppressed in C/EBP (CCAAT-enhancer-binding protein)-homologous protein (CHOP)-deficient mouse embryonic fibroblasts or DR5 knockdown HCT116 cells, but not in p53-deficient HCT116 cells. The results from in vitro studies suggest the involvement of the p53-independent CHOP/DR5 axis in the synergistic apoptosis during the combinatorial treatment of ferroptotic agent and TRAIL. The synergistic apoptosis and regression of tumor growth were also observed in xenograft tumors when SRF and TRAIL were administered to tumor-bearing mice.  相似文献   

20.
Functional analysis of TRAIL receptors using monoclonal antibodies   总被引:29,自引:0,他引:29  
mAbs were generated against the extracellular domain of the four known TNF-related apoptosis-inducing ligand (TRAIL) receptors and tested on a panel of human melanoma cell lines. The specificity of the mAb permitted a precise evaluation of the TRAIL receptors that induce apoptosis (TRAIL-R1 and -R2) compared with the TRAIL receptors that potentially regulate TRAIL-mediated apoptosis (TRAIL-R3 and -R4). Immobilized anti-TRAIL-R1 or -R2 mAbs were cytotoxic to TRAIL-sensitive tumor cells, whereas tumor cells resistant to recombinant TRAIL were also resistant to these mAbs and only became sensitive when cultured with actinomycin D. The anti-TRAIL-R1 and -R2 mAb-induced death was characterized by the activation of intracellular caspases, which could be blocked by carbobenzyloxy-Val-Ala-Asp (OMe) fluoromethyl ketone (zVAD-fmk) and carbobenzyloxy-Ile-Glu(OMe)-Thr-Asp (OMe) fluoromethyl ketone (zIETD-fmk). When used in solution, one of the anti-TRAIL-R2 mAbs was capable of blocking leucine zipper-human TRAIL binding to TRAIL-R2-expressing cells and prevented TRAIL-induced death of these cells, whereas two of the anti-TRAIL-R1 mAbs could inhibit leucine zipper-human TRAIL binding to TRAIL-R1:Fc. Furthermore, use of the blocking anti-TRAIL-R2 mAb allowed us to demonstrate that the signals transduced through either TRAIL-R1 or TRAIL-R2 were necessary and sufficient to mediate cell death. In contrast, the expression of TRAIL-R3 or TRAIL-R4 did not appear to be a significant factor in determining the resistance or sensitivity of these tumor target cells to the effects of TRAIL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号