首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of prochymosin directed by a cloned cDNA under the control of a trp promoter was examined in E. coli C600 and HB101. The latter host exhibited a higher degree of expression as to the production of prochymosin in the form of inclusion bodies, which accounted for more than 15 ~ 20% of the total cellular protein. The conditions for the processing of prochymosin in the inclusion bodies to active chymosin were determined. Several enzymatic properties of the processed bacterial chymosin, such as its specific activities as to milk-clotting and proteolysis, heat stability and Ca2 + dependence of the clotting activity, were almost identical to those of authentic chymosin. However, a slight difference was observed with regard to the immunological reactivity with anti-prochymosin antibody.  相似文献   

2.
When the heterologous proteins thaumatin and bovine prochymosin are produced in yeast cells as a fusion with the yeast invertase secretory signal peptide, less than 2% of the product is secreted in a biologically active form into the medium. The remainder accumulates intracellularly in a misfolded conformation. We investigated whether this poor secretion can be improved by overexpression of binding protein (BiP) one of the major chaperones in eukaryotic cells. Indeed, a tenfold increase in the level of binding protein, as a result of the introduction of extra copies of the kar2 gene into yeast cells containing a single, integrated copy of the invertase/prochymosin fusion gene, caused more than a 20-fold increase in the amount of extracellular prochymosin. By additional disruption of the PMR1 gene of these cells we were able to obtain secretion of virtually all of the prochymosin produced. Export of thaumatin, on the other hand, was not significantly stimulated by binding protein overexpression.  相似文献   

3.
Escherichia coli strain HB101 harboring an expression plasmid bearing calf prochymosin gene under the control of thetac promoter was grown in the presence of IPTG with or without novobiocin at 28 and 40 °C, respectively. The differential rates of synthesis of prochymosin inclusion, and, for comparison, of β-lactamase and β-galactosidase, as well as plasmid copy number, were determined during the first hours of steady state growth. At 28 °C the induced expression of prochymosin gene was almost blocked. Addition of novobiocin did not alleviate this effect. In fact, it strengthtened it, and we conclude that both these additive inhibitory effects are a consequence of the decrease in negative superhelical tension of plasmid DNA to an insufficient level. At 40 °C the differential rate of prochymosin synthesis was markedly enhanced. Since the copy number of the expression plasmid increased approximately to the same extent, we conclude that an increase in gene dose is the cause. The stimulation of cloned heterologous gene expression at 40 °C and inhibition at 28 °C may be conveniently used in biotechnological-scale cultivations of some recombinant bacteria.  相似文献   

4.
Summary Some bioenergetic consequences of overexpression of plasmid-encoded homologous (phosphoglycerate kinase), and heterologous (prochymosin), protein in S. cerevisiae strains grown in chemostat culture have been investigated. Both overexpressing strains were found to exhibit similar fermentation patterns despite a 10-fold difference in product expression levels. Biomass yields were lower than those for a control strain, and the onset of oxido-fermentative metabolism occurred at a lower dilution rate. A marked rise in cellular ATP content with increasing dilution rate during oxidative growth was observed in the strain overexpressing yeast phosphoglycerate kinase (PGK); this at present cannot be adequately explained. The inorganic phosphate content of the overexpressing strains was higher than that of the control and the phosphorylation potential of the prochymosin expressing strain was up to 10-fold lower than both the control and PGK overexpressing strains. It is proposed that expression of heterologous prochymosin imposes a greater energy drain on the host than overexpression of homologous PGK. This energetic drain may be a limiting factor in heterologous gene expression.  相似文献   

5.
牛凝乳酶原基因在乳酸乳球菌中的表达   总被引:1,自引:0,他引:1  
【目的】利用乳酸乳球菌nisin诱导基因表达系统(the NIsin Controlled gene Expression system,NICE)表达牛凝乳酶原。【方法】从克隆载体pS19-PPC中获得牛凝乳酶原基因,将该基因与表达载体pNZ8148连接并电转化乳酸乳球菌NZ9000,转化子经酶切、PCR和测序鉴定后,用nisin进行诱导表达,表达产物利用SDS-PAGE和Western blot鉴定,表达产物纯化后检测凝乳活性。【结果】重组牛凝乳酶原与天然牛凝乳酶原比较,其分子量大小、免疫性质、生物活性和抑制剂敏感性没有发现显著差异,其凝乳活性可达2×103IMCU/mL。【结论】在乳酸乳球菌中表达了具有凝乳活性的牛凝乳酶原,同时乳酸乳球菌作为发酵剂和凝乳酶产生菌双重角色的实现,为奶酪加工提供了新思路和新方法。  相似文献   

6.
Escherichia coli HB101 harboring an expression plasmid that bears the calf prochymosin gene controlled by the tac promoter was cultivated under different conditions in order to find an optimal fermentation arrangement that would lead to maximal prochymosin yield. Our results indicate that it is advantageous to use lactose in the double role of inducer and carbon/energy source when foreign gene expression is controlled by the tac promoter and the gene product is only moderately toxic owing to its accumulation in the form of an intracellular body. Glucose, on the other hand, may be used when expression should be repressed. Growth temperature substantially influenced the specific rate of prochymosin and beta-lactamase gene expression and the plasmid copy number. Three phases were distinguished in the time course of the fermentation on lactose: exponential growth practically without prochymosin synthesis, linear growth with prochymosin synthesis, and prochymosin synthesis without growth of biomass. The synthesis of prochymosin in the form of intracellular inclusion body was accompanied by the loss of respiratory activity of the cell and the loss of its ability to multiply. Sixteen hours cultivation at 37 degrees C in a complex medium with lactose as inducer and carbon/energy source resulted in up to 30% of the volume and 48% of the total protein of biomass being accumulated for as prochymosin inclusion bodies. The concentration of extractable enzymatically active chymosin in the culture reached 12 mg/L.  相似文献   

7.
The causes of the instability of a multicopy plasmid, pCT70, which directs the expression of calf prochymosin in Escherichia coli, were investigated. Plasmid pAT153 and its derivative, pCT54, were stable for more than 90 generations in continuous culture with glucose limitation. The multicopy plasmid pCT66, which expressed very low levels of prochymosin due to poor translational efficiency, and low copy number plasmids which efficiently expressed the prochymosin gene, were also stable. These results indicated that high level translation of the recombinant gene was the cause of the instability of pCT70. The maximum specific growth rate of E. coli(pCT70) was reduced by 30% compared with E. coli(pCT66). To fulfil the requirements of a production system, a dual origin plasmid with controllable copy number was developed. Both this plasmid (pMG165) and a derivative which contained the prochymosin gene (pMG168) were stable when maintained at low copy number. When the copy number of plasmid pMG168 was increased by putting replication under the control of the lambda PR promoter and the cI857 temperature sensitive repressor, expression of prochymosin was achieved. This strategy enables large-scale production of prochymosin without the need for antibiotic selection or other methods of preventing plasmid loss.  相似文献   

8.
Activation of the four separate components of prochymosin (prorennin) at pH 5.0 demonstrated that each zymogen was the precursor to an electrophoretically distinct chymosin (rennin). When the increase in milk-clotting activity with time was analysed, the mechanism of activation of unfractionated prochymosin, individual prochymosin components, and a mixture of the prochymosin fractions at pH 5.0 was shown to follow essentially autocatalytic kinetics. The activation of prochymosin C was completed in 70 h, whereas the other three fractions each required more than 110 h for complete activation under the same conditions. Intact prochymosin, the mixture of four components and prochymosin C were activated at similar rates. Interaction of the individual fractions during activation is suggested to explain the increased rate of the activation for the mixture. Comparison of autocatalytic activation of unfractionated prochymosin purified chromatographically at pH 6.7 and 5.7 demonstrated an increased rate of reaction of the zymogen prepared at the lower pH value. The possibility that prochymosin became susceptible to activation during preparation at pH values slightly below 6.0, as a result of changes in the proportion of the components or a conformational change and exposure of the active site, is discussed.  相似文献   

9.
DNA complementary to calf stomach mRNA has been synthesised and inserted into the Pst1 site of pAT153 by G-C tailing. Clones containing sequences coding for prochymosin were recognised by colony hybridisation with cDNA extended from a chemically synthesised oligodeoxynucleotide primer, the sequence of which was predicted from the published amino acid sequence of calf prochymosin. Two clones were identified which together contained a complete copy of prochymosin mRNA. The nucleotide sequence is in substantial agreement with the reported amino acid sequence of prochymosin and shows that this protein has a mol.wt. of 40431 and chymosin a mol.wt. of 35612. The sequence also indicates that prochymosin is synthesised as a precursor molecule, preprochymosin, having a 16 amino acid hydrophobic leader sequence analogous to that reported for other secreted proteins.  相似文献   

10.
1. Prochymosin in solution in the presence of 8 M-urea is fully unfolded, as indicated by its fluorescence spectrum, fluorescence quenching behaviour and far-u.v.c.d. spectrum. 2. Equilibrium studies on the unfolding of prochymosin and pepsinogen by urea were carried out at pH 7.5 and pH 9.0. The results indicate that the stabilization energies of the two proteins are identical at pH 7.5, but that at pH 9.0 pepsinogen is significantly less stable than prochymosin. 3. Kinetic studies on the unfolding of prochymosin and pepsinogen indicate that the processes can be described by a single first-order rate constant, and that at any given value of denaturant concentration and pH the rate of unfolding of prochymosin is significantly greater than that of pepsinogen. 4. Unfolding of prochymosin by concentrated urea is not fully reversible, unlike that of pepsinogen. Kinetic analysis of the refolding of the proteins suggests the presence of a slow process following unfolding in urea; for pepsinogen this process leads to a slowly refolding form, whereas for prochymosin the slow process in urea leads to a form that cannot refold on dilution of the denaturant. 5. The results provide a rationale for an empirical process for recovery of recombinant prochymosin after solubilization of inclusion bodies in concentrated urea. 6. In all respects studied here, natural and recombinant bovine prochymosin were indistinguishable, indicating that the refolding protocol yields a recombinant product identical with natural prochymosin.  相似文献   

11.
利用RT-PCR克隆获得牛凝乳酶原基因的cDNA序列, 测序后与GenBank中凝乳酶原基因进行序列比对和生物信息学分析。序列比对统计分析显示, 该基因为牛凝乳酶原B基因, 与已知牛和其他哺乳动物的凝乳酶原基因具有很高的同源性,18种哺乳动物凝乳酶原基因密码子一、二、三位点的碱基偏倚度分别为:6.227、1.042和1.456。这表明该基因具有整体保守性和突变位点偏倚性两个特征, 可以作为哺乳动物系统进化的研究对象。采用多种方法构建的该基因系统进化树一致表明, 偶蹄动物与灵长动物的亲缘关系比偶蹄动物与啮齿动物的亲缘关系更近, 比偶蹄动物与食肉动物的亲缘关系更远, 并且18种哺乳动物的亲缘关系与动物种系进化关系一致, 为哺乳动物系统进化关系研究提供了分子水平的佐证和依据。  相似文献   

12.
Summary An automatic fed-batch procedure for the production of recombinant proteins in Escherichia coli was developed. Using glycerol as carbon source and by controlling the growth rate by using feed-forward algorithm, enabled high specific expression level (10–20 % of total cell protein) at high cell densities (20 g dry wt/l) to be achieved: rat and human soluble catechol-O-methyltransferase, calf prochymosin, and human troponin C were expressed with nearly 50-fold higher volumetric yield compared to the conventional (batch) procedures.  相似文献   

13.
P Kaspar  M Fábry  J Sedlácek  S Zadrazil 《Gene》1988,67(1):131-136
A series of hybrid prochymosin derivatives containing portions of the simian virus 40 small-t antigen in the pro-part was constructed. Portions comprising 93, 63, 47, 12, and 1 amino acid (aa) from the N terminus of the small-t antigen were separately fused via eight polylinker-encoded amino acids to a prochymosin product commencing with the 5th aa of the pro-part. All the DNAs coding for the hybrid proteins were put under pL-promoter control in the expression constructs. Expression revealed that only fusion of the 47-aa or 12-aa stretch of the small-t antigen to prochymosin gave stable protein products and that only the latter one allowed the hybrid prochymosin to be activated to chymosin. The products containing 93 aa and 63 aa of small-t antigen were unstable and degraded. Complete removal of the small-t antigen portion led to mRNA instability, probably owing to inefficient initiation of translation.  相似文献   

14.
Unusual zymogen-processing properties of a mutated form of prochymosin   总被引:2,自引:0,他引:2  
Site-specific mutagenesis of the gene encoding bovine prochymosin was used to produce a mutated zymogen in which seven contiguous amino acids of the N-terminal propeptide had been deleted and an eighth residue had been substituted. This altered region spans the normal site of autocatalytic proteolysis that occurs at the same time as (enzymatic) activation of prochymosin at acidic pH. Activation of the mutated zymogen at pH 4.5 was extremely slow, and cleavage occurred at an unusual Ser-Lys bond in the propeptide of the zymogen. The mutated prochymosin incubated at pH 2 generated the usual pseudochymosin by cleavage of the normal Phe-Leu bond, but at a rate severalfold slower than the authentic zymogen. These results indicate that even after deletion of seven of 42 amino acids of the propeptide the mutant protein could still assume a prochymosin (zymogen) structure, although these changes did result in striking differences in acid-catalyzed activation and processing reactions at one but not the other of the two processing sites of prochymosin.  相似文献   

15.
Expression of cloned calf prochymosin gene sequence in Escherichia coli   总被引:1,自引:0,他引:1  
K Nishimori  Y Kawaguchi  M Hidaka  T Uozumi  T Beppu 《Gene》1982,19(3):337-344
An expression plasmid for calf prochymosin (prorennin) cDNA was constructed. The plasmid (pCR301) contains the lacUV5 promoter in front of the fused gene in which the codons for the N-terminal four amino acids of prochymosin cDNA were replaced with those for the N-terminal ten amino acids of beta-galactosidase. Synthesis of the fused protein with the expected Mr was detected immunologically in Escherichia coli harboring pCR301. The product seemed to be localized in the cell membrane of the bacterial host.  相似文献   

16.
A recombinant chymosin was secreted at high levels using fusion genes with A. oryzae glucoamylase gene (glaA) and a wheat bran solid-state culture system. Two portions of the A. oryzae glucoamylase, one with almost the entire glucoamylase (GA1–603) lacking 9 amino acids at the carboxyl terminal, and the other (GA1–511) lacking the starch binding-domain, were fused in frame with prochymosin cDNA. Western blot analysis indicated that the mature chymosin was released from the secreted fusion protein by autocatalytic processing. The transformant harboring the GA1-511-prochymosin construct showed about 5-fold chymosin production of the transformant in which the chymosin gene was directly expressed under the control of the glaA promoter in submerged culture. Moreover, wheat bran solid-state culture gave about 500-fold higher yield of the chymosin (approximately 150 mg/kg wheat bran) compared with the submerged culture.  相似文献   

17.
Functional properties of protein disulfide isomerase A (PDIA) from Aspergillus niger were investigated using ribonuclease A, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and prochymosin as substrates. PDIA was shown to function as an isomerase catalyzing the refolding of denatured and reduced ribonuclease A. PDIA also exhibited trx-independent chaperone activity preventing the aggregation of reduced, denatured GAPDH, an enzyme lacking disulfide bonds. Both isomerase activity and chaperone function of PDIA were essential for the efficient refolding of the reduced, denatured prochymosin.  相似文献   

18.
Recent reports have shown that synthesis of certain recombinant proteins in Escherichia coli results in the production of intracellular inclusion bodies. These studies have not analyzed the structure of the inclusion body especially regarding the intermolecular forces holding it together. We have examined structural aspects of inclusion bodies made in E. coli as a result of high level expression of the eukaryotic protein, calf prochymosin. Prochymosin is a monomeric protein containing three disulfide bridges. It was expressed at up to 20% of cell protein from a plasmid containing the E. coli tryptophan promoter, operator and ribosome binding site. Proteins in the inclusion bodies were analysed by Western blotting of SDS-polyacrylamide gels. When experiments were done using conditions which preserved the in vitro state of thiol groups, inclusions were shown to be composed of multimers of prochymosin molecules which were interlinked partly by disulfide bonds. The inclusion bodies also contained a high concentration of reduced prochymosin. The presence of intermolecular disulfides probably contributes to the difficulty of solubilizing recombinant prochymosin during its purification from E. coli.  相似文献   

19.
Position 36p in the propeptides of gastric aspartic proteinases is generally occupied by lysine or arginine. This has led to the conclusion that a basic residue at this position, which interacts with the active-site aspartates, is essential for folding and activation of the zymogen. Lamb prochymosin has been shown by cDNA cloning to possess glutamic acid at 36p. To investigate the effect of this natural mutation which appears to contradict the proposed role of this residue, calf and lamb prochymosins and their two reciprocal mutants, K36pE and E36pK, respectively, were expressed in Escherichia coli, refolded in vitro, and autoactivated at pH 2 and 4.7. All four zymogens could be activated to active chymosin and, at both pH values, the two proteins with Glu36p showed higher activation rates than the two Lys36p forms. Glu36p was also demonstrated in natural prochymosin isolated from the fourth stomach of lamb, as well as being encoded in the genomes of sheep, goat and mouflon, which belong to the subfamily Caprinae. A conserved basic residue at position 36p of prochymosin is thus not obligatory for its folding or autocatalytic activation. The apparently contradictory results for porcine pepsinogen A [Richter, C., Tanaka, T., Koseki, T. & Yada, R.Y. (1999) Eur. J. Biochem. 261, 746-752] can be reconciled with those for prochymosin. Lys/Arg36p is involved in stabilizing the propeptide-enzyme interaction, along with residues nearer the N-terminus of the propeptide, the sequence of which varies between species. The relative contribution of residue 36p to stability differs between pepsinogen and prochymosin, being larger in the former.  相似文献   

20.
To circumvent problems encountered in the synthesis of active chymosin in a number of bacteria and fungi, a recombinant DNA L-form expression system that directed the complete secretion of fully activable prochymosin into the extracellular culture medium was developed. The expression plasmid constructions involved the in-frame fusion of prochymosin cDNA minus codons 1 to 4 to streptococcal pyrogenic exotoxin type A gene (speA') sequences, including the speA promoter, ribosomal binding site, and signal sequence and five codons of mature SpeA. Secretion of fusion prochymosin enzymatically and immunologically indistinguishable from bovine prochymosin was achieved after transformation of two stable protoplast type L-form strains derived from Proteus mirabilis. The secreted proenzyme was converted by autocatalytic processing to chymosin showing milk-clotting activity. In controlled laboratory fermentation processes, a maximum specific rate of activable prochymosin synthesis of 0.57 x 10(-3)/h was determined from the time courses of biomass dry weight and product formation. Yields as high as 40 +/- 10 micrograms/ml were obtained in the cell-free culture fluid of strain L99 carrying a naturally altered expression plasmid of increased segregational stability. The expression-secretion system described may be generally useful for production of recombinant mammalian proteins synthesized intracellularly as aberrantly folded insoluble aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号