共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In vivo and in vitro effects of a HIF-1alpha inhibitor, RX-0047 总被引:1,自引:0,他引:1
Dikmen ZG Gellert GC Dogan P Yoon H Lee YB Ahn CH Shay JW 《Journal of cellular biochemistry》2008,104(3):985-994
4.
Jiang M Wang B Wang C He B Fan H Guo TB Shao Q Gao L Liu Y 《Journal of cellular biochemistry》2008,103(1):321-334
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy. 相似文献
5.
Yunzhi Guan Chi Sun Fei Zou Hongli Wang Feizhou Lu Jian Song Siyang Liu Xinlei Xia Jianyuan Jiang Xiaosheng Ma 《Journal of cellular and molecular medicine》2021,25(13):6006-6017
To investigate the regulatory effect of carbohydrate sulfotransferase 3 (CHST3) in cartilage endplate-derived stem cells (CESCs) on the molecular mechanism of intervertebral disc degeneration after nucleus pulposus repair in rats. We performed GO and KEGG analysis of GSE15227 database to select the differential genes CHST3 and CSPG4 in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration, IHC and WB to detect the protein profile of CHST3 and CSPG4, Co-IP for the interaction between CHST3 and CSPG4. Then, immunofluorescence was applied to measure the level of CD90 and CD105, and flow cytometry indicated the level of CD73, CD90 and CD105 in CESCs. Next, Alizarin red staining, Alcian blue staining and TEM were performed to evaluate the effects of CESCs into osteoblasts and chondroblasts, respectively, CCK8 for the cell proliferation of osteoblasts and chondroblasts after induction for different times; cell cycle of osteoblasts or chondroblasts was measured by flow cytometry after induction, and WB for the measurement of specific biomarkers of OC and RUNX in osteoblasts and aggrecan, collagen II in chondroblasts. Finally, colony formation was applied to measure the cell proliferation of CESCs transfected with ov-CHST3 or sh-CHST3 when cocultured with bone marrow cells, WB for the protein expression of CHST3, CSPG4 and ELAVL1 in CSECs, transwell assay for the migration of CESCs to bone marrow cells, TEM image for the cellular characteristics of bone marrow cells, and WB for the protein profile of VCAN, VASP, NCAN and OFD1 in bone marrow cells. CHST3 and CSPG4 were differentially expressed and interacted in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration; CD73, CD90 and CD105 were lowly expressed in CESCs, osteogenic or chondroblastic induction changed the characteristics, proliferation, cell cycle and specific biomarkers of osteoblasts and chondroblasts after 14 or 21 days,; CHST3 affected the cell proliferation, protein profile, migration and cellular features of cocultured CESCs or bone marrow cells. CHST3 overexpression promoted CESCs to regulate bone marrow cells through interaction with CSPG4 to repair the grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration. 相似文献
6.
Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration 下载免费PDF全文
Ying Hu Kai Zhang Xiaojiang Sun Changqing Zhao Hua Li Yan Michael Li Jie Zhao 《Journal of cellular and molecular medicine》2018,22(1):261-276
Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC‐derived exosomes (MSC‐exosomes) on NPC apoptosis and IVD degeneration and investigate the regulatory effect of miRNAs in MSC‐exosomes and associated mechanisms for NPC apoptosis. MSC‐exosomes were isolated from MSC medium, and its anti‐apoptotic effect was assessed in a cell and rat model. The down‐regulated miRNAs in apoptotic NPCs were identified, and their contents in MSC‐exosomes were detected. The target genes of eligible miRNAs and possible downstream pathway were investigated. Purified MSC‐exosomes were taken up by NPCs and suppressed NPC apoptosis. The levels of miR‐21 were down‐regulated in apoptotic NPCs while MSC‐exosomes were enriched in miR‐21. The exosomal miR‐21 could be transferred into NPCs and alleviated TNF‐α induced NPC apoptosis by targeting phosphatase and tensin homolog (PTEN) through phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Intradiscal injection of MSC‐exosomes alleviated the NPC apoptosis and IVD degeneration in the rat model. In conclusion, MSC‐derived exosomes prevent NPCs from apoptotic process and alleviate IVD degeneration, at least partly, via miR‐21 contained in exosomes. Exosomal miR‐21 restrains PTEN and thus activates PI3K/Akt pathway in apoptotic NPCs. Our work confers a promising therapeutic strategy for IVD degeneration. 相似文献
7.
8.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. 相似文献
9.
The aim of this study was to gain information relevant to disc repair processes. Limited degradation of the collagen matrix by matrix metalloproteases (MMPs) may facilitate the loosening of cell-cell and cell-matrix interactions within the injured intervertebral disc (IVD) to favour the penetration of blood vessels and migration of fibroblasts into the defect to promote repair processes. Gelatinase A (MMP-2) has a particularly important role to play in angiogenesis, in the present study we investigated the in vitro regulation of MMP-2 by Transforming Growth Factor-beta 1 (TGF-beta 1) and Insulin-like Growth Factor-1 (beta IGF-I) in cells from the nucleus pulposus (NP) of the ovine IVD. Ovine NP cells were grown in alginate bead cultures in complete medium (10% foetal calf serum) for 7 days, established in serum-free conditions for 24 h, then stimulated with TGF-beta 1 (0.1 or 10 ng/ml) or IGF-I (2 or 50 ng/ml) +/-Concanavalin A (20 microg/ml) for an additional 48 h. Conditioned medium was examined for matrix metalloproteases using gelatin zymography, Tissue Inhibitor of Metalloproteinase 2 (TIMP-2) and Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) were immunolocalised in beads. Pro (72 kDa) and active (59 kDa) MMP-2 were the major gelatinolytic MMPs detected in control cultures, the TGF-beta 1 and IGF-I treatments significantly decreased levels of the active MMP-2, inclusion of Concanavalin A resulted in a complete reversal of this trend with IGF-I, and to a lesser extent with TGF-beta 1. Cell surface levels of TIMP-2 and MT1-MMP were decreased by the TGF-beta 1 treatment while IGF-I only appeared to decrease TIMP-2 expression. The findings of this study provide some insight as to why dense avascular connective tissues such as the intervertebral disc have such a poor healing potential. 相似文献
10.
Xianjian Qiu Tongzhou Liang Zizhao Wu Yuanxin Zhu Wenjie Gao Bo Gao Jincheng Qiu Xudong Wang Taiqiu Chen Zhihuai Deng Pengfei Li Yanbo Chen Hang Zhou Yan Peng Caixia Xu Peiqiang Su Anjing Liang Dongsheng Huang 《International journal of biological sciences》2022,18(5):2202
Background: Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment.Methods: Western blotting, RT-qPCR and immunohistochemistry were used to detect the expression of melatonin membrane receptors (MTNR1A/B) and TNF-α in human NP tissues. In vitro, human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids transfection and immunoprecipitation were used to explore the specific mechanism of melatonin. In vivo, the rat IDD model was constructed and melatonin was injected intraperitoneally to evaluate its therapeutical effect on IDD.Results: The upregulation of TNF-α and downregulation of melatonin membrane receptors (MTNR1A/B) were observed in degenerative NP tissues. Then we demonstrated that melatonin could alleviate the development of IDD in a rat model and reverse TNF-α-impaired metabolism of NP cells in vitro. Further investigation revealed that the protective effects of melatonin on NP cells mainly rely on MTNR1B, which subsequently activates Gαi2 protein. The activation of Gαi2 could upregulate the yes-associated protein (YAP) level, resulting in anabolic enhancement of NP cells. In addition, melatonin-mediated YAP upregulation increased the expression of IκBα and suppressed the TNF-α-induced activation of the NF-κB pathway, thereby inhibiting the catabolism of NP cells.Conclusions: Our results revealed that melatonin can reverse TNF-α-impaired metabolism of NP cells via the MTNR1B/Gαi2/YAP axis and suggested that melatonin can be used as a potential therapeutic drug in the treatment of IDD. 相似文献
11.
12.
13.
SIRT1 expression is refractory to hypoxia and inflammatory cytokines in nucleus pulposus cells: Novel regulation by HIF‐1α and NF‐κB signaling 下载免费PDF全文
Xiaofei Wang Hongjian Li Kang Xu Haipeng Zhu Yan Peng Anjing Liang Chunhai Li Dongsheng Huang Wei Ye 《Cell biology international》2016,40(6):716-726
14.
《Journal of cellular and molecular medicine》2017,21(7):1373-1387
Intervertebral disc degeneration is widely recognized as a cause of lower back pain, neurological dysfunction and other musculoskeletal disorders. The major inflammatory cytokine IL‐1β is associated with intervertebral disc degeneration; however, the molecular mechanisms that drive IL‐1β production in the intervertebral disc, especially in nucleus pulposus (NP) cells, are unknown. In some tissues, advanced glycation end products (AGEs), which accumulate in NP tissues and promote its degeneration, increase oxidative stress and IL‐1β secretion, resulting in disorders, such as obesity, diabetes mellitus and ageing. It remains unclear whether AGEs exhibit similar effects in NP cells. In this study, we observed significant activation of the NLRP3 inflammasome in NP tissues obtained from patients with degenerative disc disease compared to that with idiopathic scoliosis according to results detected by Western blot and immunofluorescence. Using NP cells established from healthy tissues, our in vitro study revealed that AGEs induced an inflammatory response in NP cells and a degenerative phenotype in a NLRP3‐inflammasome‐dependent manner related to the receptor for AGEs (RAGE)/NF‐κB pathway and mitochondrial damage induced by mitochondrial reactive oxygen species (mtROS) generation, mitochondrial permeability transition pore (mPTP) activation and calcium mobilization. Among these signals, both RAGE and mitochondrial damage primed NLRP3 and pro‐IL‐1β activation as upstream signals of NF‐κB activity, whereas mitochondrial damage was critical for the assembly of inflammasome components. These results revealed that accumulation of AGEs in NP tissue may initiate inflammation‐related degeneration of the intervertebral disc via activation of the NLRP3 inflammasome. 相似文献
15.
16.
17.
18.
Pinyin Cao Mohong Deng Jian Li Hengxing Cai Qinggong Meng Yingjie Li Xing Long 《Journal of cellular and molecular medicine》2018,22(2):1283-1291
High mobility group 1 protein (HMGB1), a highly conserved nuclear DNA‐binding protein and inflammatory mediator, has been recently found to be involved in angiogenesis. Our previous study has demonstrated the elevation of HMGB1 in the tissue of perforated disc of temporomandibular joint (TMJ). Here, we investigated a novel mediator of HMGB1 in regulating hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) to mediate angiogenesis in perforated disc cells of TMJ. HMGB1 increased the expression of HIF‐1α and VEGF in a dose‐ and time‐dependent manner in these cells. Moreover, immunofluorescence assay exhibits that the HIF‐1α were activated by HMGB1. In addition, HMGB1 activated extracellular signal‐related kinase 1/2 (Erk1/2), Jun N‐terminal kinase (JNK), but not P38 in these cells. Furthermore, both U0126 (ErK inhibitor) and SP600125 (JNK inhibitor) significantly suppressed the enhanced production of HIF‐1α and VEGF induced by HMGB1. Tube formation of human umbilical vein endothelial cells (HUVECs) was significantly increased by exposure to conditioned medium derived from HMGB1‐stimulated perforated disc cells, while attenuated with pre‐treatment of inhibitors for VEGF, HIF‐1α, Erk and JNK, individually. Therefore, abundance of HMGB1 mediates activation of HIF‐1α in disc cells via Erk and JNK pathway and then, initiates VEGF secretion, thereby leading to disc angiogenesis and accelerating degenerative change of the perforated disc. 相似文献
19.
High amplitude and low frequency cyclic mechanical strain promotes degeneration of human nucleus pulposus cells via the NF‐κB p65 pathway 下载免费PDF全文
Shengjie Wang Jie Li Jiwei Tian Zhenghong Yu Kun Gao Jia Shao Ang Li Shuai Xing Yonghui Dong Zhiyong Li Yanzheng Gao Liping Wang Cory J. Xian 《Journal of cellular physiology》2018,233(9):7206-7216
20.
Cutroneo KR White SL Buttolph TR Allison G Ehrlich HP 《Journal of cellular biochemistry》2007,100(5):1081-1085
Hepatomas thrive in a hypoxic environment resulting in the induction of a cluster of hypoxia related genes. The protein phenotypic expression include hypoxia inducible factor-alpha, prolyl-4-hydroxylase, vascular endothelear growth factor and erythropoietin. The present study was undertaken to determine if human hepatoma cells when cultured for 72 h in the presence of serum under normoxia would maintain their cancerous phenotypic expression of certain hypoxia inducible genes. Our positive results affords an in vitro model system to test hypoxia inhibitors on the expression and the intracellular compartmentalization or the secretion of these hypoxia-inducible proteins. 相似文献