首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand influenza virus infection of pigs, we examined primary swine respiratory epithelial cells (SRECs, the primary target cells of influenza viruses in vivo), as a model system. Glycomic profiling of SRECs by mass spectrometry revealed a diverse range of glycans terminating in sialic acid or GalαGal. In terms of sialylation, α2–6 linkage was more abundant than α2–3, and NeuAc was more abundant than NeuGc. Virus binding and infection experiments were conducted to determine functionally important glycans for influenza virus infection, with a focus on recently emerged swine viruses. Infection of SRECs with swine and human viruses resulted in different infectivity levels. Glycan microarray analysis with a high infectivity “triple reassortant” virus ((A/Swine/MN/593/99 (H3N2)) that spread widely throughout the North American swine population and a lower infectivity human virus isolated from a single pig (A/Swine/ONT/00130/97 (H3N2)) showed that both viruses bound exclusively to glycans containing NeuAcα2–6, with strong binding to sialylated polylactosamine and sialylated N-glycans. Treatment with mannosamine precursors of sialic acid (to alter NeuAc/NeuGc abundances) and linkage-specific sialidases prior to infection indicated that the influenza viruses tested preferentially utilize NeuAcα2–6-sialylated glycans to infect SRECs. Our data indicate that NeuAcα2–6-terminated polylactosamine and sialylated N-glycans are important determinants for influenza viruses to infect SRECs. As NeuAcα2–6 polylactosamine glycans play major roles in human virus infection, the importance of these receptor components in virus infection of swine cells has implications for transmission of viruses between humans and pigs and for pigs as possible adaptation hosts of novel human influenza viruses.  相似文献   

2.
3.
Sodium p-chloromercuribenzoate (PCMB) caused a noticeable reduction of infectivity of prototype strains of type A and Lee strain of type B influenza viruses at concentrations of 100 and 200 μg/ml, respectively, after an incubation at 37 C for 60 min. The virucidal effect on A/AA/2/60 (H2N2) strain was dependent on the concentration of the drug and temperature as well as on the time of incubation. The reagent exerted this effect at a concentration which induced little change in the hemagglutinating and neuraminidase activities of the virus. PCMB inhibited by 50% the virus particle-associated RNA polymerase activity of all prototype strains of type A influenza virus at about 2 μg/ml and that of Lee strain of type B influenza virus at 8.5 μg/ml. Other sulfhydryl reagent such as phenylmercuric nitrate also exhibited virucidal effect on A/AA/2/60 virus which paralleled their inhibition of the virus particle-associated RNA polymerase activity. From these results it was considered likely that the virucidal action of PCMB on influenza viruses was attributable to inhibition of the virus particle-associated RNA polymerase activity.  相似文献   

4.
The HeLa cell line which is one of the most popular cell lines was shown to be suitable for isolation of types A (H3N2) and B influenza viruses from throat washings of patients. Sixty-nine and 67 out of 147 throat washings taken from patients during the period from January to April, 1994, were positive for influenza A virus in HeLa cells and MDCK cells, respectively. Seven out of 10 throat washings taken between January and March, 1993, were positive for influenza B virus in MDCK. Of these 7, 4 were also positive for HeLa cells.  相似文献   

5.
Influenza is one of the most common acute febrile respiratory diseases in adults. Epidemics caused by influenza viruses occur every few years. When such epidemics are in progress, the medical community, the general public and the news media seek information regarding the presence, spread and severity of influenza. The methods and findings of the Influenza Surveillance System in California for the years 1968 through 1973 should be of interest generally. This period spans the total California experience with the type A Hong Kong variant (A/Hong Kong/1/68 [H3N2]), and the first appearance of the English strain of type A influenza virus (A/England/42/72 [H3N2]).The surveillance of influenza during this period showed that there were major epidemics in Calfornia only during the state''s first experience with the type A Hong Kong variant in 1968-69, and with the English strain in 1972-73. Problems and limitations in influenza surveillance do exist. Nonetheless, the major surveillance indices used (school absenteeism, laboratory data and deaths from pneumonia and influenza) are reliable and sensitive indicators of general trends of influenza virus activity. These indices are most useful in comparing the relative severity of influenza epidemics. However, since these indices usually lag several weeks behind the occurrence of disease, this lag must be considered in making estimates of current incidence trends based on these indices.  相似文献   

6.
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.  相似文献   

7.
Lin JH  Chiu SC  Cheng JC  Chang HW  Hsiao KL  Lin YC  Wu HS  Salemi M  Liu HF 《PloS one》2011,6(8):e23454

Background

Many studies concentrate on variation in the hemagglutinin glycoprotein (HA) because of its significance in host immune response, the evolution of this virus is even more complex when other genome segments are considered. Recently, it was found that cytotoxic T lymphocytes (CTL) play an important role in immunity against influenza and most CTL epitopes of human influenza viruses were remarkably conserved. The NP gene has evolved independently in human and avian hosts after 1918 flu pandemic and it has been assigned a putative role as a determinant of host range.

Methods and Findings

Phylodynamic patterns of the genes encoding nucleoprotein (NP) of influenza A viruses isolated from 1979–2009 were analyzed by applying the Bayesian Markov Chain Monte Carlo framework to better understand the evolutionary mechanisms of these Taiwanese isolates. Phylogenetic analysis of the NP gene showed that all available H3 worldwide isolates collected so far were genetically similar and divided into two major clades after the year 2004. We compared the deduced amino acid sequences of the NP sequences from human, avian and swine hosts to investigate the emergence of potential adaptive mutations. Overall, selective pressure on the NP gene of human influenza A viruses appeared to be dominated by purifying selection with a mean dN/dS ratio of 0.105. Site-selection analysis of 488 codons, however, also revealed 3 positively selected sites in addition to 139 negatively selected ones.

Conclusions

The demographic history inferred by Bayesian skyline plot showed that the effective number of infections underwent a period of smooth and steady growth from 1998 to 2001, followed by a more recent rise in the rate of spread. Further understanding the correlates of interspecies transmission of influenza A virus genes from other host reservoirs to the human population may help to elucidate the mechanisms of variability among influenza A virus.  相似文献   

8.
A comparative study was made of the susceptibility of 11 cell lines of human and animal origin, the WI-38 cell strain and fresh cultures of human thyroid, monkey kidney and hamster embryo tissues to certain human viruses. The animal cell lines were derived from monkey, rabbit, mouse, pig and calf tissues. The viruses used were strains of influenza A2 and B viruses, parainfluenza viruses types 1, 2 and 3, RS virus, adenoviruses types 3, 4 and 21, poliovirus type 1 and Coxsackie A type 21 and Coxsackie B type 3 viruses. Cell lines derived from nonprimate tissues were generally less susceptible than cell cultures of human and simian origin. The combined use of fresh cultures of human thyroid and monkey kidney tissues and of a human cell line seems to provide a satisfactory indicator system for the viruses employed in this study.  相似文献   

9.

Background

Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009.The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test.Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically.

Results

In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively.Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010.

Conclusions

Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.
  相似文献   

10.
The emergence of the human 2009 pandemic H1N1 (H1N1pdm) virus from swine populations refocused public and scientific attention on swine as an important source of influenza A viruses bearing zoonotic potential. Widespread and year-round circulation of at least four stable lineages of porcine influenza viruses between 2009 and 2012 in a region of Germany with a high-density swine population is documented here. European avian influenza virus-derived H1N1 (H1N1av) viruses dominated the epidemiology, followed by human-derived subtypes H1N2 and H3N2. H1N1pdm viruses and, in particular, recently emerging reassortants between H1N1pdm and porcine HxN2 viruses (H1pdmN2) were detected in about 8% of cases. Further reassortants between these main lineages were diagnosed sporadically. Ongoing diversification both at the phylogenetic and at the antigenic level was evident for the H1N1av lineage and for some of its reassortants. The H1avN2 reassortant R1931/11 displayed conspicuously distinct genetic and antigenic features and was easily transmitted from pig to pig in an experimental infection. Continuing diverging evolution was also observed in the H1pdmN2 lineage. These viruses carry seven genome segments of the H1N1pdm virus, including a hemagglutinin gene that encodes a markedly antigenically altered protein. The zoonotic potential of this lineage remains to be determined. The results highlight the relevance of surveillance and control of porcine influenza virus infections. This is important for the health status of swine herds. In addition, a more exhaustive tracing of the formation, transmission, and spread of new reassortant influenza A viruses with unknown zoonotic potential is urgently required.  相似文献   

11.

Background and Objectives

Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes.

Methods and Results

Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.

Conclusion

This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.  相似文献   

12.
Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.The zoonotic potential of swine influenza viruses is well recognized (18), and pigs have been considered a leading candidate for the role of intermediate host in the generation of reassortant influenza A viruses with pandemic potential. This has been largely based on genomic analysis of influenza A viruses isolated from swine and the fact that α2,3-linked sialic acid (avian-like) and α2,6-linked sialic acid (human-like) receptors are both abundant in the swine respiratory tract (12). Despite this, there is no direct evidence that the reassortment of the 1957 and the 1968 human pandemic viruses occurred in pigs (28). Furthermore, it is very likely that the 1918 pandemic virus was introduced to pigs from humans (8, 31). The origins of influenza A viruses that have been isolated from pigs include those that are wholly human or avian, as well as reassortants containing swine, human, and avian genes (2, 20, 29). Although there have been several instances of swine-to-human transmission, for example, that of triple-reassortant swine influenza (H1) viruses (rH1N1), which appeared after 1998, they did not lead to establishment of sustained transmission in the human population (23).In the early spring of 2009, Mexico and the United States reported clusters of human pneumonia cases caused by a novel H1N1 influenza A virus. This virus subsequently spread across the globe at an unprecedented rate, prompting the WHO to declare a pandemic in June 2009. Phylogenetic analysis has inferred that the virus is likely a reassortant between a North American triple-reassortant swine H1N1 or H1N2 virus and a Eurasian lineage H1N1 swine influenza virus (7, 19). Bayesian molecular-clock analysis of each gene of this novel H1N1 virus (24) concluded that the mean evolutionary rate is typical of that of swine influenza viruses but that the duration of unsampled diversity for each gene segment had means that ranged from 9.24 to 17.15 years, suggesting that the proposed ancestors of this virus may have been circulating undetected for nearly a decade. Inadequate surveillance and characterization of influenza A viruses that circulate in swine have been blamed for this evolutionary gap.On 28 April 2009 the Canadian Food Inspection Agency (CFIA) became involved in a suspected outbreak of swine influenza on a pig farm in Leslieville, Alberta, Canada. The farm was a 220-sow farrow-to-finish operation consisting of approximately 2,200 animals that ranged from newborn piglets to market weight pigs. The animals were not vaccinated against swine influenza, and although there had been prior problems with porcine reproductive and respiratory syndrome virus and Mycoplasma hypopneumoniae, two etiologic agents of the swine respiratory disease complex, the herd had been stable with respect to respiratory disease. Beginning 20 April, approximately 25% of the pregrower and grower pigs in two of the barns exhibited respiratory problems with clinical signs that included an acute onset of coughing, lethargy, and loss of appetite. These clinical signs were preceded by the hiring of a carpenter on 14 April to work on the ventilation system in the same two barns. This individual had been ill for 2 days after his return from Mexico on 12 April (10). Given the evolving situation in Mexico and the United States, the CFIA and Alberta Agriculture and Rural Development decided to place the herd under quarantine and to carry out a full epidemiological and laboratory investigation.Here, we report on the characterization of the first pandemic H1N1 2009 viruses to be isolated from a naturally infected pig herd. Genetic sequence data from several viruses isolated from this outbreak have provided a glimpse into the mutation frequencies associated with replication of the virus in the swine host. Experimental infections of pigs comparing one of these swine isolates with the human isolate A/Mexico/InDRE4487/2009(H1N1) were also carried out and have provided insights into the pathobiological behavior of these viruses in pigs.  相似文献   

13.

Background

Human-like H3N2 influenza viruses have repeatedly been transmitted to domestic pigs in different regions of the world, but it is still uncertain whether any of these variants could become established in pig populations. The fact that different subtypes of influenza viruses have been detected in pigs makes them an ideal candidate for the genesis of a possible reassortant virus with both human and avian origins. However, the determination of whether pigs can act as a “mixing vessel” for a possible future pandemic virus is still pending an answer. This prompted us to gather the epidemiological information and investigate the genetic evolution of swine influenza viruses in Jilin, China.

Methods

Nasopharyngeal swabs were collected from pigs with respiratory illness in Jilin province, China from July 2007 to October 2008. All samples were screened for influenza A viruses. Three H3N2 swine influenza virus isolates were analyzed genetically and phylogenetically.

Results

Influenza surveillance of pigs in Jilin province, China revealed that H3N2 influenza viruses were regularly detected from domestic pigs during 2007 to 2008. Phylogenetic analysis revealed that two distinguishable groups of H3N2 influenza viruses were present in pigs: the wholly contemporary human-like H3N2 viruses (represented by the Moscow/10/99-like sublineage) and double-reassortant viruses containing genes from contemporary human H3N2 viruses and avian H5 viruses, both co-circulating in pig populations.

Conclusions

The present study reports for the first time the coexistence of wholly human-like H3N2 viruses and double-reassortant viruses that have emerged in pigs in Jilin, China. It provides updated information on the role of pigs in interspecies transmission and genetic reassortment of influenza viruses.  相似文献   

14.
Sun Y  Bi Y  Pu J  Hu Y  Wang J  Gao H  Liu L  Xu Q  Tan Y  Liu M  Guo X  Yang H  Liu J 《PloS one》2010,5(11):e15537

Background

The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed.

Methodology/Principal Findings

We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung.

Conclusions/Significance

We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.  相似文献   

15.
The continuous circulation of the highly pathogenic avian influenza (HPAI) H5N1 virus has been a cause of great concern. The possibility of this virus acquiring specificity for the human influenza A virus receptor, α2,6-linked sialic acids (SA), and being able to transmit efficiently among humans is a constant threat to human health. Different studies have described amino acid substitutions in hemagglutinin (HA) of clinical HPAI H5N1 isolates or that were introduced experimentally that resulted in an increased, but not exclusive, binding of these virus strains to α2,6-linked SA. We introduced all previously described amino acid substitutions and combinations thereof into a single genetic background, influenza virus A/Indonesia/5/05 HA, and tested the receptor specificity of these 27 mutant viruses. The attachment pattern to ferret and human tissues of the upper and lower respiratory tract of viruses with α2,6-linked SA receptor preference was then determined and compared to the attachment pattern of a human influenza A virus (H3N2). At least three mutant viruses showed an attachment pattern to the human respiratory tract similar to that of the human H3N2 virus. Next, the replication efficiencies of these mutant viruses and the effects of three different neuraminidases on virus replication were determined. These data show that influenza virus A/Indonesia/5/05 potentially requires only a single amino acid substitution to acquire human receptor specificity, while at the same time remaining replication competent, thus suggesting that the pandemic threat posed by HPAI H5N1 is far from diminished.Influenza A virus is a negative-strand RNA virus with a segmented genome within the family of Orthomyxoviridae. Influenza A viruses are divided into subtypes based on the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Currently, 16 subtypes of HA and 9 subtypes of NA have been identified in the natural reservoir of all influenza A viruses, wild aquatic birds (24). Occasionally, viruses from this reservoir cross the species barrier into mammals, including humans. When animal influenza viruses are introduced in humans, the spread of the virus is generally limited but may on occasion result in sustained human-to-human transmission. Three influenza A virus subtypes originating from the wild bird reservoir—H1, H2, and H3—have formed stable lineages in humans, starting off with a pandemic and subsequently causing yearly influenza epidemics. In the 20th century, three such pandemics have occurred, in 1918 (H1N1), 1957 (H2N2), and 1968 (H3N2). In 2009, the swine-origin H1N1 virus caused the first influenza pandemic of the 21st century (23).Efficient human-to-human transmission is a prerequisite for any influenza A virus to become pandemic. Currently, the determinants of efficient human-to-human transmission are not completely understood. However, it is believed that a switch of receptor specificity from α2,3-linked sialic acids (SA), used by avian influenza A viruses, to α2,6-linked SA, used by human influenza viruses, is essential (6, 17, 31). It has been shown that the difference in receptor use between avian and human influenza A viruses combined with the distribution of the avian and human virus receptors in the human respiratory tract results in a different localization of virus attachment (26, 33-35). Human viruses attach more abundantly to the upper respiratory tract and trachea, whereas avian viruses predominantly attach to the lower respiratory tract (5, 33-35). Theoretically, the increased presence of virus in the upper respiratory tract, due to the specificity of human influenza A viruses for α2,6-linked SA, could facilitate efficient transmission.Since 1997, highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Southeast Asia and has spread westward to Europe, the Middle East, and Africa, resulting in outbreaks of HPAI H5N1 virus in poultry and wild birds and sporadic human cases of infection in 15 different countries (38). The widespread, continuous circulation of the HPAI H5N1 strain has spiked fears that it may acquire specificity for α2,6-linked SA, potentially resulting in a pandemic. Given the currently high case fatality rate of HPAI H5N1 virus infection in humans of ca. 60%, the effect of such a pandemic on the human population could be devastating. In recent years, several amino acid substitutions in HA of HPAI H5N1 viruses have been described, either in virus isolates from patients or introduced experimentally, that increased the binding of the HPAI H5N1 HA to α2,6-linked SA (1, 2, 10, 14, 16, 29, 39, 40). However, none of the described substitutions conferred a full switch of receptor specificity from α2,3-linked SA to α2,6-linked SA and the substitutions were described in virus strains of different geographical origins. Furthermore, it is unknown whether these substitutions led to increased attachment of the virus to cells of the upper respiratory tract, the primary site of replication of human influenza A viruses.Here, we have introduced all of the 21 previously described amino acid substitutions or combinations thereof that changed the receptor specificity of HPAI H5N1 virus strains and six additional combinations not previously described, into HA of influenza virus A/Indonesia/5/05 (IND05). Indonesia is the country that has the highest cumulative number of human cases of HPAI H5N1 virus infection (38). The receptor specificity of 27 mutant H5N1 viruses was determined and the attachment pattern of a subset of these viruses to tissues of the respiratory tract of ferret and human was determined and compared to the attachment pattern of human influenza A virus (H3N2). Subsequently, the role of NA in efficient replication of these mutant viruses was investigated. The data presented here show that receptor specificity of HA of the IND05 virus can be changed by introducing a single amino acid substitution in the receptor-binding domain, resulting in replication competent viruses that attach abundantly to the human upper respiratory tract.  相似文献   

16.

Background

Influenza A(H1N1)pdm09, A(H3N2) and B viruses have co-circulated in the human population since the swine-origin human H1N1 pandemic in 2009. While infections of these subtypes generally cause mild illnesses, lower respiratory tract infection (LRTI) occurs in a portion of children and required hospitalization. The aim of our study was to estimate the prevalence of these three subtypes and compare the clinical manifestations in hospitalized children with LRTI in Guangzhou, China during the post-pandemic period.

Methods

Children hospitalized with LRTI from January 2010 to December 2012 were tested for influenza A/B virus infection from their throat swab specimens using real-time PCR and the clinical features of the positive cases were analyzed.

Results

Of 3637 hospitalized children, 216 (5.9%) were identified as influenza A or B positive. Infection of influenza virus peaked around March in Guangzhou each year from 2010 to 2012, and there were distinct epidemics of each subtype. Influenza A(H3N2) infection was more frequently detected than A(H1N1)pdm09 and B, overall. The mean age of children with influenza A virus (H1N1/H3N2) infection was younger than those with influenza B (34.4 months/32.5 months versus 45 months old; p<0.005). Co-infections of influenza A/ B with mycoplasma pneumoniae were found in 44/216 (20.3%) children.

Conclusions

This study contributes the understanding to the prevalence of seasonal influenza viruses in hospitalized children with LRTI in Guangzhou, China during the post pandemic period. High rate of mycoplasma pneumoniae co-infection with influenza viruses might contribute to severe disease in the hospitalized children.  相似文献   

17.
Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages.  相似文献   

18.
A new and practical method for the screening of neuraminidase inhibitors (NI) by means of the viral hemagglutination (HA)-dehemagglutination(deHA) reactions was suggested. The best conditions for the HA and deHA reactions were investigated. Existence of strong inhibition activity on the viral deHA has been recognized in the culture filtrates of some strains of actinomycetes. All of these deHA inhibitors showed NI activity that is not specified to the strain of the test viruses. About 0.25 mg/ml of the preparation obtained from the culture filtrate of the strongest actinomycetes, No. 289, inhibited the liberation of neuraminic acid from bovine submaxillary mucin by 80 HA units/ml of influenza A Fukuoka/1/70 (H3N2) virus up to 80%.  相似文献   

19.
H3N2 human influenza viruses that are resistant to horse, pig, or rabbit serum possess unique amino acid mutations in their hemagglutinin (HA) protein. To determine the molecular mechanisms of this resistance, we characterized the receptor-binding properties of these mutants by measuring their affinity for total serum protein inhibitors and for soluble receptor analogs. Pig serum-resistant variants displayed a markedly decreased affinity for total pig serum sialylglycoproteins (which contain predominantly 2-6 linkage between sialic acid and galactose residues) and for the sialyloligosaccharide 6′-sialyl(N-acetyllactosamine). These properties correlated with the substitution 186S→I in HA1. The major inhibitory activity in rabbit serum was found to be a β inhibitor with characteristics of mannose-binding lectins. Rabbit serum-resistant variants exhibited decreased sensitivity to this inhibitor due to the loss of a glycosylation sequon at positions 246 to 248 of the HA. In addition to a somewhat reduced affinity for 6′-sialyl(N-acetyllactosamine)-containing receptors, horse serum-resistant variants lost the ability to bind the viral neuraminidase-resistant 4-O-acetylated sialic acid moieties of equine α2-macroglobulin because of the mutation 145N→K/D in their HA1. These results indicate that influenza viruses become resistant to serum inhibitors because their affinity for these inhibitors is reduced. To determine whether natural inhibitors play a role in viral evolution during interspecies transmission, we compared the receptor-binding properties of H3N8 avian and equine viruses, including two strains isolated during the 1989 to 1990 equine influenza outbreak, which was caused by an avian virus in China. Avian strains bound 4-O-acetylated sialic acid residues of equine α2-macroglobulin, whereas equine strains did not. The earliest avian-like isolate from a horse influenza outbreak bound to this sialic acid with an affinity similar to that of avian viruses; a later isolate, however, displayed binding properties more similar to those of classical equine strains. These data suggest that the neuraminidase-resistant sialylglycoconjugates present in horses exert selective pressure on the receptor-binding properties of avian virus HA after its introduction into this host.Influenza A viruses possess two envelope glycoproteins:hemagglutinin (HA) and neuraminidase (NA). HA binds to cell surface sialylglycoconjugates and mediates virus attachment to target cells (19, 30). NA cleaves the α-glycosidic linkage between sialic acid and an adjacent sugar residue, facilitating elution of virus progeny from infected cells and preventing self-aggregation of the virus (1, 13). Natural sialylglycoconjugates are structurally diverse (37, 40), and the preferential recognition of distinct sialyloligosaccharides by HA and NA correlates with the host species from which the viruses are isolated (reviewed in references 19, 30, and 38; see also references 4, 6, 7, 11, and 28).The receptor-binding activity of influenza viruses can be inhibited by certain molecules present in the sera and fluid secretions of animals (see references 14 and 21 for reviews). These inhibitors are classified as α, β, and γ types based on their thermal stability, virus-neutralizing activity, and sensitivity to inactivation by NA and periodate treatments. The β inhibitors are thermolabile mannose-binding lectins that interact with the oligosaccharide moieties on viral glycoproteins. They neutralize virus by steric hindrance of HA and by activation of the complement-dependent pathway (2, 3). By contrast, the α and γ inhibitors are heat-stable sialylated glycoproteins that mimic the structure of the cellular receptors of influenza viruses and competitively block the receptor-binding sites of HA. Influenza viruses are neutralized by γ inhibitors but not by α inhibitors, which are considered to be sensitive to viral NA. However, the distinction between α and γ inhibitors is strain dependent and rather arbitrary, as described by Gottschalk et al. (14). Although inhibitors in serum or other body fluids are believed to influence the selection of influenza virus receptor variants in natural hosts, no direct experimental support for this hypothesis has been presented.A potent γ inhibitor of H2 and H3 human influenza viruses, equine α2-macroglobulin (EM), contains a Neu4,5Ac22-6Gal moiety that is insensitive to viral NA and thus resists inactivation by this enzyme (16, 24, 31). Cultivation of human H3 influenza viruses in the presence of horse serum results in the selection of variants that have a decreased affinity for the Neu5Ac2-6Gal-specific receptors due to a single amino acid substitution (226L→Q) in their HA (32, 33). One of these mutants (X31/HS strain) does not bind the Neu4,5Ac2 (4-O-acetylated sialic acid) species (25). Therefore, there are at least two mechanisms by which a virus can become resistant to the horse serum inhibitor: a change in the recognition of the type of Sia-Gal linkage, and a change in the recognition of the 4-O-acetylated sialic acid. The relative contributions of these mechanisms to the resistant phenotype are yet to be defined.We have previously shown that horse, pig, and rabbit sera all contain distinct heat-resistant inhibitors of the H3N2 human influenza virus A/Los Angeles/2/87 (LA/87), because variants resistant to these sera possess unique mutations in their HA receptor-binding regions (34). The major inhibitor in pig serum was later identified as α2-macroglobulin that contains predominantly 2-6 linkage between sialic acid and galactose (35). Gimsa et al. (12) recently showed that pig serum-resistant human and swine strains exhibit decreased affinity for human erythrocytes that had been modified to contain terminal Neu5Ac2-6Gal residues. However, the nature of the rabbit serum inhibitor and the mechanisms of influenza virus resistance to each serum inhibitor remain unknown.To understand the molecular mechanisms by which influenza viruses become resistant to horse, pig, and rabbit serum inhibitors, we compared the receptor-binding characteristics of LA/87 and its serum-resistant variants and analyzed these data in relation to the known amino acid substitutions in the HA of the mutants. We then analyzed the receptor-binding properties of viruses isolated during an equine influenza outbreak that was caused by an avian virus, in order to evaluate the influence of natural inhibitors on the evolution of virus in a new host.  相似文献   

20.
Eight cell lines were systematically compared for their permissivity to primary infection, replication, and spread of seven human influenza viruses. Cell lines were of human origin (Caco-2, A549, HEp-2, and NCI-H292), monkey (Vero, LLC-MK2), mink (Mv1 Lu), and canine (MDCK). The influenza viruses included seasonal types and subtypes and a pandemic virus. The MDCK, Caco-2, and Mv1 Lu cells were subsequently compared for their capacity to report neutralization titers at day one, three and six post-infection. A gradient of sensitivity to primary infection across the eight cell lines was observed. Relative to MDCK cells, Mv1 Lu reported higher titers and the remaining six cell lines reported lower titers. The replication and spread of the seven influenza viruses in the eight cell substrates was determined using hemagglutinin expression, cytopathic effect, and neuraminidase activity. Virus growth was generally concordant with primary infection, with a gradient in virus replication and spread. However, Mv1 Lu cells poorly supported virus growth, despite a higher sensitivity to primary infection. Comparison of MDCK, Caco-2, and Mv1 Lu in neutralization assays using defined animal antiserum confirmed MDCK cells as the preferred cell substrate for influenza virus testing. The results observed for neutralization at one day post-infection showed MDCK cells were similar (<1 log2 lower) or superior (>1 log2 higher) for all seven viruses. Relative to Caco-2 and Mv1 Lu cells, MDCK generally reported the highest titers at three and six days post-infection for the type A viruses and lower titers for the type B viruses and the pandemic H9N2 virus. The reduction in B virus titer was attributed to the complete growth of type B viruses in MDCK cells before day three post-infection, resulting in the systematic underestimation of neutralization titers. This phenomenon was also observed with Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号