共查询到20条相似文献,搜索用时 0 毫秒
1.
betaB2-crystallin, the major component of beta-crystallin, is a dimer at low concentrations but can form oligomers under physiological conditions. The interaction domains have been speculated to be the beta-sheets, each of which is formed by two or more beta-strands. betaB2-crystallin consists of 16 beta-strands, 8 in the N-terminal domain and 8 in the C-terminal domain. Domain interaction sites may be removed by destroying the beta-strands, which can be done by site-specific mutations, substituting the beta-formers (Val, Phe, Leu) with Glu or Asn, strong beta-breakers. We have cloned the following beta-strand-deleted mutants, I20E, L34E, V54E, V60E, V73E, L97E, I109E, I124E, V144E, V152E, L162E, L165E, and V187E and their corresponding X --> Asn mutants. We also made two mutants, V46E and V129E, that were not on the beta-strand as controls. Disruption of protein-protein interactions was screened by a mammalian two-hybrid system assay. Protein-protein interactions decreased for all beta-strand-deleted mutants except I20E, L34E, and L162E mutants; this effect was not seen in the two mutant controls, V46E and V129E. The sequences around Val-54, Val-60, Val-73, and Leu-97 in the N-terminal region and Ile-109, Ile-124, Val-144, Val-152, Leu-165, and Val-187 in the C-terminal region that formed beta-strands appear to be important in dimerization. Some selected mutant proteins that showed strong (V46E and V129E) and reduced (V60E, V144E, V60N, and V144N) interactions were expressed in bacterial culture and were studied with spectroscopy and chromatography. The V60E and V144E mutants were found to be partially unfolded and incapable of forming a complete dimer. 相似文献
2.
Two major determinants of the transparency of the lens are protein-protein interactions and stability of the crystallins, the structural proteins in the lens. betaB2 is the most abundant beta-crystallin in the human lens and is important in formation of the complex interactions of lens crystallins. betaB2 readily forms a homodimer in vitro, with interacting residues across the monomer-monomer interface conserved among beta-crystallins. Due to their long life spans, crystallins undergo an unusually large number of modifications, with deamidation being a major factor. In this study the effects of two potential deamidation sites at the monomer-monomer interface on dimer formation and stability were determined. Glutamic acid substitutions were constructed to mimic the effects of previously reported deamidations at Q162 in the C-terminal domain and at Q70, its N-terminal homologue. The mutants had a nativelike secondary structure similar to that of wild type betaB2 with differences in tertiary structure for the double mutant, Q70E/Q162E. Multiangle light scattering and quasi-elastic light scattering experiments showed that dimer formation was not interrupted. In contrast, equilibrium unfolding and refolding in urea showed destabilization of the mutants, with an inflection in the transition of unfolding for the double mutant suggesting a distinct intermediate. These results suggest that deamidation at critical sites destabilizes betaB2 and may disrupt the function of betaB2 in the lens. 相似文献
3.
4.
Smith MA Bateman OA Jaenicke R Slingsby C 《Protein science : a publication of the Protein Society》2007,16(4):615-625
The superfamily of eye lens betagamma-crystallins is highly modularized, with Greek key motifs being used to form symmetric domains. Sequences of monomeric gamma-crystallins and oligomeric beta-crystallins fold into two domains that pair about a further conserved symmetric interface. Conservation of this assembly interface by domain swapping is the device adopted by family member betaB2-crystallin to form a solution dimer. However, the betaB1-crystallin solution dimer is formed from an interface used by the domain-swapped dimer to form a tetramer in the crystal lattice. Comparison of these two structures indicated an intriguing relationship between linker conformation, interface ion pair networks, and higher assembly. Here the X-ray structure of recombinant human betaB2-crystallin showed that domain swapping was determined by the sequence and not assembly conditions. The solution characteristics of mutants that were designed to alter an ion pair network at a higher assembly interface and a mutant that changed a proline showed they remained dimeric. X-ray crystallography showed that the dimeric mutants did not reverse domain swapping. Thus, the sequence of betaB2-crystallin appears well optimized for domain swapping. However, a charge-reversal mutation to the conserved domain-pairing interface showed drastic changes to solution behavior. It appears that the higher assembly of the betagamma-crystallin domains has exploited symmetry to create diversity while avoiding aggregation. These are desirable attributes for proteins that have to exist at very high concentration for a very long time. 相似文献
5.
Clout NJ Basak A Wieligmann K Bateman OA Jaenicke R Slingsby C 《Journal of molecular biology》2000,304(3):253-257
betagamma-crystallins from the eye lens are proteins consisting of two similar domains joined by a short linker. All three-dimensional structures of native proteins solved so far reveal similar pseudo-2-fold pairing of the domains reflecting their presumed ancient origin from a single-domain homodimer. However, studies of engineered single domains of members of the betagamma-crystallin superfamily have not revealed a prototype ancestral solution homodimer. Here we report the 2.35 A X-ray structure of the homodimer of the N-terminal domain of rat betaB2-crystallin (betaB2-N). The two identical domains pair in a symmetrical manner very similar to that observed in native betagamma-crystallins, where N and C-terminal domains (which share approximately 35% sequence identity) are related by a pseudo-2-fold axis. betaB2-N thus resembles the ancestral prototype of the betagamma-crystallin superfamily as it self-associates in solution to form a dimer with an essentially identical domain interface as that between the N and C domains in betagamma-crystallins, but without the benefit of a covalent linker. The structure provides further evidence for the role of two-domain pairing in stabilising the protomer fold. These results support the view that the betagamma-crystallin superfamily has evolved by a series of gene duplication and fusion events from a single-domain ancestor capable of forming homodimers. 相似文献
6.
Circular permutation of betaB2-crystallin changes the hierarchy of domain assembly. 总被引:1,自引:0,他引:1 下载免费PDF全文
G. Wright A. K. Basak K. Wieligmann E. M. Mayr C. Slingsby 《Protein science : a publication of the Protein Society》1998,7(6):1280-1285
The betagamma-crystallins form a superfamily of eye lens proteins comprised of multiple Greek motifs that are symmetrically organized into domains and higher assemblies. In the betaB2-crystallin dimer each polypeptide folds into two similar domains that are related to monomeric gamma-crystallin by domain swapping. The crystal structure of the circularly permuted two-domain betaB2 polypeptide shows that permutation converts intermolecular domain pairing into intramolecular pairing. However, the dimeric permuted protein is, in fact, half a native tetramer. This result shows how the sequential order of domains in multi-domain proteins can affect quaternary domain assembly. 相似文献
7.
Van Montfort RL Bateman OA Lubsen NH Slingsby C 《Protein science : a publication of the Protein Society》2003,12(11):2606-2612
Crystallins are long-lived proteins packed inside eye lens fiber cells that are essential in maintaining the transparency and refractive power of the eye lens. Members of the two-domain betagamma-crystallin family assemble into an array of oligomer sizes, forming intricate higher-order networks in the lens cell. Here we describe the 1.4 angstroms resolution crystal structure of a truncated version of human betaB1 that resembles an in vivo age-related truncation. The structure shows that unlike its close homolog, betaB2-crystallin, the homodimer is not domain swapped, but its domains are paired intramolecularly, as in more distantly related monomeric gamma-crystallins. However, the four-domain dimer resembles one half of the crystallographic bovine betaB2 tetramer and is similar to the engineered circular permuted rat betaB2. The crystal structure shows that the truncated betaB1 dimer is extremely well suited to form higher-order lattice interactions using its hydrophobic surface patches, linker regions, and sequence extensions. 相似文献
8.
A new crystal form of the bovine oligomeric lens protein beta B2 has been grown in the presence of calcium acetate. The crystals are orthorhombic, I222 or I2(1)2(1)2(1), with cell dimensions a = 77.8 A, b = 83.6 A, c = 109.2 A. This new crystal form, which diffracts to at least 2.5 A, has a and b cell dimensions that are half those of the original crystal form, although there is no simple relationship between the c cell dimensions. The new crystal form reported here contains only one subunit per asymmetric unit, indicating that the dimer lies on a crystallographic 2-fold axis, and is a suitable candidate for molecular replacement studies. 相似文献
9.
Preferential conservation of the globular domains of the beta A3/A1-crystallin polypeptide of the chicken eye lens 总被引:4,自引:0,他引:4
The primary structure of the beta 19/26-crystallin polypeptide of the chicken lens has been determined by cDNA sequencing and primer extension experiments. In addition, a primer extension experiment has corrected the sequence for the N-terminal arm of the murine beta 23 polypeptide, which is the homologue of the chicken beta 19/26 polypeptide. We also show that, in the chicken and mouse, the N-terminal arm of the polypeptide is encoded on two separate exons. For simplicity, we have changed the names of both chicken beta 19/26 and murine beta 23 to beta A3/A1, which is the name of the homologous bovine polypeptide. The deduced sequence of the chicken beta A3/A1 polypeptide fits the predicted three-dimensional structure involving two homologous domains, each folded into two 'Greek key' motifs, common to the beta gamma-crystallin superfamily of proteins. Comparison of the amino acid sequence of the chicken and mammalian beta A3/A1 polypeptides indicates that different regions of the protein, which are encoded on different exons, are diverging at different rates. The N-terminal extension is the fastest evolving region of the beta A3/A1 polypeptide. Hybrid-selected translation coupled with primer extension experiments suggest that a single chicken beta A3/A1 mRNA synthesizes two polypeptides, beta A3 (25 kDa) and beta A1 (23 kDa) by utilization of different translation initiation sites. 相似文献
10.
Deamidation, but not truncation, decreases the urea stability of a lens structural protein, betaB1-crystallin 总被引:3,自引:0,他引:3
Kim YH Kapfer DM Boekhorst J Lubsen NH Bächinger HP Shearer TR David LL Feix JB Lampi KJ 《Biochemistry》2002,41(47):14076-14084
Crystallins, the major structural proteins in the lens of the eye, are maintained with little turnover throughout the lifetime of the host. With time, lens crystallins undergo post-translational modifications that may play an important role in loss of vision during aging and cataract formation. Specific modifications include deamidation and truncation. Urea-induced denaturation was studied for recombinantly expressed wild-type betaB1 (WT), the deamidated mutant (Q204E), an N-terminally truncated mutant (betaB1(DeltaN41)), and other truncated versions of these proteins generated by calpain II digestion. Tryptophan fluorescence was used to monitor loss of global tertiary structure. Loss of secondary structure was followed by circular dichroism, and electron paramagnetic resonance site-directed spin labeling was used to monitor loss of tertiary structure selectively in the N-terminal domain. Our results indicated that the deamidated mutant was significantly destabilized relative to WT. Q204E showed a two-step denaturation curve with transitions at 4.1 and 7.2 M urea, whereas denaturation of WT occurred in a cooperative single step with a transition midpoint of 5.9 M urea. Unfolding of WT was completely reversible, whereas Q204E failed to fully refold. Prolonged incubation under denaturing conditions led to aggregation, which was also more pronounced for Q204E dimers than for WT. Truncation of 41 residues from the N-terminus or 47 and 5 residues from the N- and C-termini did not affect stability. These studies indicated that a single-site deamidation could significantly diminish the stability of lens betaB1-crystallin, supporting the idea that such modifications may play an important role in age-related cataract formation. 相似文献
11.
betaB2- and gammaC-crystallins belong to the betagamma-crystallin superfamily and have very similar structures. Molecular spectroscopic techniques such as UV-visible absorption, circular dichroism, and fluorescence indicate they have similar biophysical properties. Their structures are characterized by the presence of two domains consisting of four Greek key motifs. The only difference is the connecting peptide of the two domains, which is flexible in gamma-crystallin but extended in beta-crystallin; thus, an intradomain association and a monomer are formed in gamma-crystallin and an interdomain association and a dimer are formed in beta-crystallin. The difference may be reflected in the thermodynamic stability. In the present study, we calculated the standard free-energy by equilibrium unfolding transition in guanidine hydrochloride using three spectroscopic parameters: absorbance at 235nm, Trp fluorescence intensity at 320nm, and far-UV circular dichroism at 223nm. Global analyses indicate that both dimeric betaB2- and monomeric gammaC-crystallins are a better fit to a three-state model than to a two-state model. In terms of standard free-energy, deltaG(0)(H(2)O,i) both betaB2-crystallin and gammaC-crystallin are stable proteins and dimeric betaB2-crystallin is more stable than the monomeric gammaC-crystallin. The significance of the thermodynamic stability for betaB2- and gammaC-crystallins may be related to their functions in the lens. 相似文献
12.
Age-related changes in protein-protein interactions in the lens play a critical role in the temporal evolution of its optical properties. In the relatively non-regenerating environment of the fiber cells, a critical determinant of these interactions is partial or global unfolding as a consequence of post-translational modifications or chemical damage to individual crystallins. One type of attractive force involves the recognition by alpha-crystallins of modified proteins prone to unfolding and aggregation. In this paper, we explore the energetic threshold and the structural determinants for the formation of a stable complex between alpha-crystallin and betaB2-crystallin as a consequence of destabilizing mutations in the latter. The mutations were designed in the framework of a folding model that proposes the equilibrium population of a monomeric intermediate. Binding to alpha-crystallin is detected through changes in the emission properties of a bimane fluorescent probe site-specifically introduced at a solvent exposed site in betaB2-crystallin. alpha-Crystallin binds the various betaB2-crystallin mutants, although with a significantly lower affinity relative to destabilized T4 lysozyme mutants. The extent of binding, while reflective of the overall destabilization, is determined by the dynamic population of a folding intermediate. The existence of the intermediate is inferred from the biphasic bimane emission unfolding curve of a mutant designed to disrupt interactions at the dimer interface. The results of this paper are consistent with a model in which the interaction of alpha-crystallins with substrates is not solely triggered by an energetic threshold but also by the population of excited states even under favorable folding conditions. The ability of alpha-crystallin to detect subtle changes in the population of betaB2-crystallin excited states supports a central role for this chaperone in delaying aggregation and scattering in the lens. 相似文献
13.
To elucidate the structural and energetic basis of attractive protein interactions in the aging lens, we investigated the binding of destabilized mutants of betaB1-crystallin to the lens chaperones, alpha-crystallins. We show that the mutations enhance the binding affinity to alphaA- but not alphaB-crystallin at physiological temperatures. Complex formation disrupts the dimer interface of betaB1-crystallin consistent with the binding of a monomer. Binding isotherms obtained at increasing concentrations of betaB1-crystallin deviate from a classic binding equilibrium and display cooperative-like behavior. In the context of betaB1-crystallin unfolding equilibrium, these characteristics are reflective of the concentration-dependent change in the population of a dimeric intermediate that has low affinity to alphaA-crystallin. In the lens, where alpha-crystallin binding sites are not regenerated, this may represent an added mechanism to maintain lens transparency. 相似文献
14.
MacDonald JT Purkiss AG Smith MA Evans P Goodfellow JM Slingsby C 《Protein science : a publication of the Protein Society》2005,14(5):1282-1292
The thermodynamic and kinetic stabilities of the eye lens family of betagamma-crystallins are important factors in the etiology of senile cataract. They control the chance of proteins unfolding, which can lead to aggregation and loss of transparency. betaB2-Crystallin orthologs are of low stability and comprise two typical betagamma-crystallin domains, although, uniquely, the N-terminal domain has a cysteine in one of the conserved folded beta-hairpins. Using high-temperature (500 K) molecular dynamics simulations with explicit solvent on the N-terminal domain of rodent betaB2-crystallin, we have identified in silico local flexibility in this folded beta-hairpin. We have shown in vitro using two-domain human betaB2-crystallin that replacement of this cysteine with a more usual aromatic residue (phenylalanine) results in a gain in conformational stability and a reduction in the rate of unfolding. We have used principal components analysis to visualize and cluster the coordinates from eight separate simulated unfolding trajectories of both the wild-type and the C50F mutant N-terminal domains. These data, representing fluctuations around the native well, show that although the mutant and wild-type appear to behave similarly over the early time period, the wild type appears to explore a different region of conformational space. It is proposed that the advantage of having this low-stability cysteine may be correlated with a subunit-exchange mechanism that allows betaB2-crystallin to interact with a range of other beta-crystallin subunits. 相似文献
15.
The X-ray structure of a mutant eye lens beta B2-crystallin with truncated sequence extensions. 总被引:2,自引:0,他引:2 下载免费PDF全文
B. V. Norledge S. Trinkl R. Jaenicke C. Slingsby 《Protein science : a publication of the Protein Society》1997,6(8):1612-1620
beta-Crystallins are oligomeric eye lens proteins that are related to monomeric gamma-crystallins by domain swapping: like gamma-crystallins, they are comprised of two similar domains but they differ in having long sequence extensions. beta B2, a major component of beta-crystallin oligomers, self-associates to a homodimer in solution. In two crystal structures of native beta B2, the protein is a 222-symmetric tetramer of eight domains. It has previously been shown that a mutant of rat beta B2-crystallin, in which the bulk of the N- and C-terminal sequence extensions has been deleted, assembles into dimers and tetramers. Here we present the 3.0 A resolution X-ray structure of the tetramer, beta B2 delta NC1. The mutant tetramer has a very similar set of domain interactions to the native structure. However, the structures differ in the relative orientation of the two sets of four domains. The paired N- and C-terminal domain interface, which is at the heart of the dimer structure, is very similar to the native structure. However, the truncation of the C-terminal extension removes an important tryptophan residue, which prevents the extension from acting as a (non-covalent) linker, as it does in native beta B2. There is a knock-on structural effect that removes a contact between extension and covalent linker, and this appears to cause a small twist in the linker that is amplified into a 20 degrees rotation between sets of paired domains. 相似文献
16.
The sequence extensions of the beta-crystallin subunits have been suggested to play an important role in the oligomerization of these eye lens proteins. This, in turn, may contribute to maintaining lens transparency and proper light refraction. In homo-dimers of the betaA3- and betaB2-crystallin subunits, these extensions have been shown by (1)H-NMR spectroscopy to be solvent-exposed and highly flexible. In this study, we show that betaA3- and betaB2-crystallins spontaneously form mixed betaA3/betaB2-crystallin complexes, which, from analytical ultracentrifugation experiments, are dimeric at low concentrations (<1 mg ml(-1)) and tetrameric at higher protein concentrations. (1)H-NMR spectroscopy reveals that in the betaA3/betaB2-crystallin tetramer, the N-terminal extensions of betaA3-crystallin remain water-exposed and flexible, whereas both N- and C-terminal extensions of betaB2-crystallin lose their flexibility. We conclude that both extensions of betaB2-crystallin are involved in protein-protein interactions in the betaA3/betaB2-crystallin hetero-tetramer. The extensions may stabilize and perhaps promote the formation of this mixed complex. 相似文献
17.
L R Croft 《Biochimica et biophysica acta》1973,295(1):174-177
18.
Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the alpha-crystallin molecular chaperone system recognizes and binds these proteins before they can form the light-scattering centres that result in cataract, thus maintaining the long-term transparency of the lens. In the present study, we investigated the unfolding and aggregation of (wild-type) human and calf betaB2-crystallins and the formation of a complex between alpha-crystallin and betaB2-crystallins under destabilizing conditions. Human and calf betaB2-crystallin unfold through a structurally similar pathway, but the increased stability of the C-terminal domain of human betaB2-crystallin relative to calf betaB2-crystallin results in the increased population of a partially folded intermediate during unfolding. This intermediate is aggregation-prone and prevents constructive refolding of human betaB2-crystallin, while calf betaB2-crystallin can refold with high efficiency. alpha-Crystallin can effectively chaperone both human and calf betaB2-crystallins from thermal aggregation, although chaperone-bound betaB2-crystallins are unable to refold once returned to native conditions. Ordered secondary structure is seen to increase in alpha-crystallin with elevated temperatures up to 60 degrees C; structure is rapidly lost at temperatures of 70 degrees C and above. Our experimental results combined with previously reported observations of alpha-crystallin quaternary structure have led us to propose a structural model of how activated alpha-crystallin chaperones unfolded betaB2-crystallin. 相似文献
19.
20.
One of the factors, which influences protein folding in vivo, is a linkage of protein domains into multidomain tandems. However, relatively little is known about the impact of domain connectivity on protein folding mechanisms. In this article, we use coarse grained models of proteins to explore folding of tandem-linked domains (TLD). We found TLD folding to follow two scenarios. In the first, the tandem connectivity produces relatively minor impact on folding and the mechanisms of folding of tandem-linked and single domains remain similar. The second scenario involves qualitative changes in folding mechanism because of tandem linkage. As a result, protein domains, which fold via two-state mechanism as single isolated domains, may form new stable intermediates when inserted into tandems. The new intermediates are created by topological constraints imposed by the linkers between domains. In both cases tandem linkage slows down folding. We propose that the impact of tandem connectivity can be minimized, if the terminal secondary structure elements (SSEs) are flexible. In particular, two factors appear to facilitate TLD folding: (1) the interactions between terminal SSE are poorly ordered in the folding transition state, whereas nonterminal SSE are better structured, (2) the interactions between terminal SSE are weak in the native state. We apply these findings to wild-type proteins by examining experimental phi-value data and by performing all-atom molecular dynamics simulations. We show that immunoglobulin-like domains appear to utilize the factors, which minimize the impact of tandem connectivity on their folding. Several single domain proteins, which are likely to misfold in tandems, are also identified. 相似文献