首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic relationships among 21 barley accessions (17 of bulbous barley H. bulbosum L. and 4 of cultivated barley (H. vulgare L.) collected from different part of Turkey were investigated using Random Amplified Polymorphic DNA (RAPD). Eleven informative primers amplified 111 markers of which 98 (89.8%) were polymorphic. A dendogram was constructed using the UPGMA method based on the RAPD markers. The range of genetic similarity was from 0.111 to 0.815. The accessions were grouped into two main clusters based on the molecular data. The H. vulgare and H. bulbosum separated into two groups in the principle component analysis. The text was submitted by the authors in English.  相似文献   

2.
Summary The distribution of genetic variants of a group of low molecular weight, chloroform-methanol soluble proteins (CM proteins), among Moroccan and non-Moroccan accessions of Hordeum spontaneum and among selections from several Moroccan landraces of H. vulgare and cultivars of the same species with widespread European origin, suggests that domestication of barley might have taken place in Morocco. An agromorphological characterization of the H. spontaneum accessions further supports this hypothesis. The possible Moroccan origin of the French cultivar Hatif de Grignon and of several Spanish 6-rowed barleys is also presented.  相似文献   

3.
Using a cDNA array-based functional genomics approach in barley, several candidate genes for malting quality including serine carboxypeptidase I (Cxp1) were previously identified (Potokina et al. in Mol Breed 14:153, 2004). The gene was mapped as a single nucleotide polymorphism (SNP) marker on chromosome 3H using the Steptoe (feeding grade) × Morex (malting grade) mapping population. Subsequently, the relative level of Cxp1 expression was determined by real-time RT-PCR for each of the 134 progeny lines and mapped as a quantitative trait. Only one quantitative trait locus (QTL) could be identified that significantly influenced the level of the Cxp1 expression. The expressed QTL maps to the same region on chromosome 3H as does the structural gene and corresponds to a QTL for “diastatic power,” one among several traits measured to assess malting quality. An analysis of 90 barley cultivars sampled from a worldwide collection revealed six SNPs at the Cxp1 locus, three of which display complete linkage disequilibrium and define two haplotypes. The Cxp1 expression level in a set of barley accessions showing haplotype I was significantly higher than that of accessions displaying haplotype II. The data provide evidence that (1) the expression of Cxp1 is regulated in cis and that (2) the level of diastatic power in the barley seed is influenced by the level of Cxp1 expression. Supplementary material is available in the online version of this article at  相似文献   

4.
Five barley chloroplast DNA microsatellites (cpSSRs) were used to study genetic relationships among a set of 186 barley accessions—34 Hordeum vulgare ssp. spontaneum (HS accessions) from Morocco, Ethiopia, Cyprus, Crete, Libya, Iraq, Iran, Turkey, Afghanistan and Israel, 122 H. vulgare ssp. vulgare landraces (HV landraces) from Spain, Bolivia (old Spanish introductions), Morocco, Libya and Ethiopia and 20 modern European spring barleys (HV cultivars). All loci were polymorphic in the material studied, with the number of alleles per locus ranging from two to three. Fifteen multi-locus haplotypes were observed, 11 in HS accessions and seven in HV landraces and cultivars. Of the seven haplotypes found in the HV lines, three were shared with the HS accessions, and four were unique. Cluster analysis revealed two main groups, one consisting of HS accessions from Ethiopia and the HV landraces from Spain, Bolivia (old Spanish), Morocco and Ethiopia, whereas the other larger group contained all of the other accessions studied. Based on these grouping and the existence of haplotypes found in the HV landraces and cultivars but not in the HS wild barley, a polyphyletic origin is proposed for barley, with further centres of origin in Ethiopia and the Western Mediterranean.  相似文献   

5.
One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA.  相似文献   

6.
By searching the EMBL DNA sequence database, we were able to develop 39 new, database-derived barley microsatellites. Eighteen of these EMBL microsatellites were mapped either to the interspecific barley map Lerche×BGRC41936 (L×41), the Igri×Franka map (I×F, Graner et al. 1991), or to both maps simultaneously. In addition, all 39 EMBL microsatellites were assigned to individual barley chromosomes by PCR screening of wheat barley addition lines. Both studies verified a random distribution of the microsatellites within the barley genome. Subsequently, 22 EMBL microsatellites were used to assess the genetic similarity among a set of 28, mainly German, barley cultivars and two wild form accessions. Spring and winter cultivars could be easily differentiated using the first coordinate of a principal coordinate analysis. Whereas the group of spring barley cultivars appeared rather homogeneous, winter barley cultivars could be divided into three subgroups. Two H. v. ssp. spontaneum accessions were included in the assessment of genetic similarity. They were placed among the winter barley cultivars. Based on the assessment of the 30 barley cultivars and accessions, the polymorphism information content (PIC) of each EMBL microsatellite has been calculated. The average PIC value among the EMBL microsatellites was equal to 0.38, which ascertains the value of these microsatellites as a genetic tool in barley genome research projects. Received: 6 December 1999 / Accepted: 23 February 2000  相似文献   

7.
A survey of allozymic alleles and genetic diversity was made for 151 accessions of the American Barley Core Collection. A total of 25 alleles at ten loci were observed. Two loci were monomorphic. The average diversity index for individual loci ranged between 0.026 and 0.649. Most significant differences in allelic frequency and genetic diversity value were found between spring and winter barley. Spring barley showed a greatly higher average diversity than winter barley (t=2.124, P=0.071). The smallest differences in allelic frequencies and diversity values were observed between the two geographical regions, North and South America. Rare alleles were detected only in a few accessions. Seven rare alleles were associated with spring barley. The genetic similarities among the 151 accessions ranged from 0.20 to 1.00, which showed that a high level of genetic variability exists in this set of core accessions. Cluster analysis and principal coordinate analysis did not give clear-cut separation of different types of barley, but most of the winter barley accessions were closely associated. Received: 7 April 2000 / Accepted: 13 June 2000  相似文献   

8.
9.
Seedlings of eleven varieties of barley (Hordeum vulgare L.) showed differences in utilization of K+ from a full nutrient solution containing 3.0 mM K+. The K+ content of both roots and shoots was proportional to the fresh weights and dry weights after a week in the nutrient solution. The K+ use-efficiency ratio, which indicates the efficiency of nutrient utilization (mg dry weight produced per mg K+ absorbed), differed significantly among the varieties. There was no correlation between influx of Rb+ and the content of K+. It is suggested that there are wide varietal differences in such genetically-determined properties as ion influx and efflux and net ion transport to the shoot. Further-more, the influx of Rb+ was closely linked to transpiration, probably due to a variety-specific non-metabolic part of Rb+ influx. Varietal differences in influx of Rb+ were more pronounced in high-K+ roots than in low-K+ roots with maximum rate of Rb+ uptake, but the rank of varieties was the same in each case. – Criteria for the selection of K+ use-efficient varieties of barley are discussed.  相似文献   

10.
The domestication of plants frequently results in a high level of genetic differentiation between domesticated plants and their wild progenitors. This process is counteracted by gene flow between wild and domesticated plants because they are usually able to inter‐mate and to exchange genes. We investigated the extent of gene flow between wild barley Hordeum spontaneum and cultivated barley Hordeum vulgare, and its effect on population structure in wild barley by analysing a collection of 896 wild barley accessions (Barley1K) from Israel and all available Israeli H. vulgare accessions from the Israeli gene bank. We compared the performance of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) marker data genotyped over a core collection in estimating population parameters. Estimates of gene flow rates with SSR markers indicated a high level of introgression from cultivated barley into wild barley. After removing accessions from the wild barley sample that were recently admixed with cultivated barley, the inference of population structure improved significantly. Both SSR and SNP markers showed that the genetic population structure of wild barley in Israel corresponds to the three major ecogeographic regions: the coast, the Mediterranean north and the deserts in the Jordan valley and the South. Gene flow rates were estimated to be higher from north to south than in the opposite direction. As has been observed in other crop species, there is a significant exchange of alleles between the wild species and domesticated varieties that needs to be accounted for in the population genetic analysis of domestication.  相似文献   

11.
Tibetan wild barley is rich in genetic diversity with potential allelic variation useful for salinity-tolerant improvement of the crop. The objectives of this study were to evaluate salinity tolerance and analysis of the allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Salinity tolerance of 189 Tibetan wild barley accessions was evaluated in terms of reduced dry biomass under salinity stress. In addition, Na+ and K+ concentrations of 48 representative accessions differing in salinity tolerance were determined. Furthermore, the allelic and functional diversity of HvHKT1 and HvHKT2 was determined by association analysis as well as gene expression assay. There was a wide variation among wild barley genotypes in salt tolerance, with some accessions being higher in tolerance than cultivated barley CM 72, and salinity tolerance was significantly associated with K+/Na+ ratio. Association analysis revealed that HvHKT1 and HvHKT2 mainly control Na+ and K+ transporting under salinity stress, respectively, which was validated by further analysis of gene expression. The present results indicated that Tibetan wild barley offers elite alleles of HvHKT1 and HvHKT2 conferring salinity tolerance.  相似文献   

12.
Atienza SG  Jafary H  Niks RE 《Planta》2004,220(1):71-79
Nonhost resistance is the most common type of resistance in plants. Understanding the factors that make plants susceptible or resistant may help to achieve durably effective resistance in crop plants. Screening of 109 barley (Hordeum vulgare L.) accessions in the seedling stage indicated that barley is a complete nonhost to most of the heterologous rust fungi studied, while it showed an intermediate status with respect to Puccinia triticina, P. hordei-murini, P. hordei-secalini, P. graminis f. sp. lolii and P. coronata ff. spp. avenae and holci. Accessions that were susceptible to a heterologous rust in the seedling stage were much more or completely resistant at adult plant stage. Differential interaction between barley accessions and heterologous rust fungi was found, suggesting the existence of rust-species-specific resistance. In particular, many landrace accessions from Ethiopia and Asia, and naked-seeded accessions, tended to be susceptible to several heterologous rusts, suggesting that some resistance genes in barley are effective against more than one heterologous rust fungal species. Some barley accessions had race-specific resistance against P. hordei-murini. We accumulated genes for susceptibility to P. triticina and P. hordei-murini in two genotypes called SusPtrit and SusPmur, respectively. In the seedling stage, these accessions were as susceptible as the host species to the target rusts. They also showed unusual susceptibility to other heterologous rusts. These two lines are a valuable asset to further experimental work on the genetics of resistance to heterologous rust fungi.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1319-1Abbreviations ff. spp Formae speciales - RIL Recombinant inbred line - DC Double cross - DC-S Progeny produced by selfing of double-cross plants  相似文献   

13.
Summary Under favorable nutrition, accessions of the weedy barleygrass (Hordeum leporinum and H. glaucum) had a higher relative growth rate (RGR) than did accessions of cultivated barley (H. vulgare) or its wild progenitor (H. spontaneum). RGR was not positively correlated with the presumed level of soil fertility at the collection site of an accession either within or among species. RGR was reduced more strongly by low-P supply in the progenitor than in the crop or weed, indicating that selection of cultivars to grow in fertile soils had not reduced their potential to grow effectively under low-P conditions. Seed and embryo masses were more important than RGR in determining plant size. Relative differences among assessions in plant size declined with time, because (1) accessions with small seeds had a higher RGR, and (2) RGR of large-seeded accessions declined with time. Absolute growth rate correlated positively with leaf area and negatively with photosynthetic rate per unit leaf area. Under favorable nutrition, maximum photosynthetic rate correlated negatively with leaf length and therefore was higher in the weeds than in the crop or progenitor accessions. P absorption potential did not differ consistently among species but generally increased in response to P stress. Cultivars produced a few tall tillers, whereas weeds and progenitors produced many small tillers. The cultivar had a larger proportion of reproductive tillers, allocated a larger proportion of biomass to grain, and produced larger grains than did the weedy accession. By contrast, the weed began maturing seeds sooner, produced more reproductive tillers, and produced more grains per car and per plant than did the cultivar. The study suggests two major conclusions: (1) A low RGR is not an adaptation to low P supply in annual Hordeum species. (2) Seed size is the major determinant of early plant size between accessions in these Hordeum species under favorable nutrition. However, large seed size indirectly results in a low RGR because of the inverse relationship between plant size and RGR and results in a low photosynthetic rate because of the inverse relationship between leaf size and photosynthesis.  相似文献   

14.
The broad adaptability of wheat and barley is in part attributable to their flexible growth habit, in that spring forms have recurrently evolved from the ancestral winter growth habit. In diploid wheat and barley growth habit is determined by allelic variation at the VRN-1 and/or VRN-2 loci, whereas in the polyploid wheat species it is determined primarily by allelic variation at VRN-1. Dominant Vrn-A1 alleles for spring growth habit are frequently associated with mutations in the promoter region in diploid wheat and in the A genome of common wheat. However, several dominant Vrn-A1, Vrn-B1, Vrn-D1 (common wheat) and Vrn-H1 (barley) alleles show no polymorphisms in the promoter region relative to their respective recessive alleles. In this study, we sequenced the complete VRN-1 gene from these accessions and found that all of them have large deletions within the first intron, which overlap in a 4-kb region. Furthermore, a 2.8-kb segment within the 4-kb region showed high sequence conservation among the different recessive alleles. PCR markers for these deletions showed that similar deletions were present in all the accessions with known Vrn-B1 and Vrn-D1 alleles, and in 51 hexaploid spring wheat accessions previously shown to have no polymorphisms in the VRN-A1 promoter region. Twenty-four tetraploid wheat accessions had a similar deletion in VRN-A1 intron 1. We hypothesize that the 2.8-kb conserved region includes regulatory elements important for the vernalization requirement. Epistatic interactions between VRN-H2 and the VRN-H1 allele with the intron 1 deletion suggest that the deleted region may include a recognition site for the flowering repression mediated by the product of the VRN-H2 gene of barley.  相似文献   

15.
 Studies of allelic variations at six isozyme loci revealed genetic diversity of 380 East Asian accessions of the Barley Core Collection. Genetic variation was found in both cultivars and landraces in different regions. Allelic variations at the Aco-1 and Aco-2 loci were detected for East Asian barley for the first time. Moreover, the Aco-1 locus displayed the highest genetic diversity among the six loci assayed. Indian cultivars showed the highest diversity, followed by Korean and Chinese cultivars. Landraces from Bhutan and Nepal showed the lowest diversity. Cultivars had generally higher diversity than landraces within as well as among regions. The cluster analysis of genetic identity showed that all landraces from different countries can be placed in one group; the cultivars from Japan, India and Korea each form independent groups. Gpi-1 Gu, Pgd-1 Tj, Aco-1 Si, Ndh-2 D and Aco-2 A were rare alleles found in only a few accessions of 6-rowed barley. The Pgd-2 Tn allele was very rare in East Asian accessions. Received: 29 July 1998 / Accepted: 2 November 1998  相似文献   

16.
Fusarium head blight (FHB) is a threat to barley (Hordeum vulgare L.) production in many parts of the world. A number of barley accessions with partial resistance have been reported and used in mapping experiments to identify quantitative trait loci (QTL) associated with FHB resistance. Here, we present a set of barley germplasm that exhibits FHB resistance identified through screening a global collection of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) accessions. Seventy-eight accessions were classified as resistant or moderately resistant. The collection of FHB resistant accessions consists of 5, 27, 46 of winter, wild and spring barley, respectively. The population structure and genetic relationships of the germplasm were investigated with 1,727 Diversity Array Technology (DArT) markers. Multiple clustering analyses suggest the presence of four subpopulations. Within cultivated barley, substructure is largely centered on spike morphology and growth habit. Analysis of molecular variance indicated highly significant genetic variance among clusters and within clusters, suggesting that the FHB resistant sources have broad genetic diversity. The haplotype diversity was characterized with DArT markers associated with the four FHB QTLs on chromosome 2H bin8, 10 and 13 and 6H bin7. In general, the wild barley accessions had distinct haplotypes from those of cultivated barley. The haplotype of the resistant source Chevron was the most prevalent in all four QTL regions, followed by those of the resistant sources Fredrickson and CIho4196. These resistant QTL haplotypes were rare in the susceptible cultivars and accessions grown in the upper Midwest USA. Some two- and six-rowed accessions were identified with high FHB resistance, but contained distinct haplotypes at FHB QTLs from known resistance sources. These germplasm warrant further genetic studies and possible incorporation into barley breeding programs.  相似文献   

17.
According to a widely accepted theory on barley domestication, wild barley (Hordeum vulgare ssp. spontaneum) from the Fertile Crescent is the progenitor of all cultivated barley (H. vulgare ssp. vulgare). To determine whether barley has undergone one or more domestication events, barley accessions from three continents have been studied (a) using 38 nuclear SSR (nuSSRs) markers, (b) using five chloroplast SSR (cpSSR) markers yielding 5 polymorphic loci and (c) by detecting the differences in a 468 bp fragment from the non-coding region of chloroplast DNA. A clear separation was found between Eritrean/Ethiopian barley and barley from West Asia and North Africa (WANA) as well as from Europe. The data from chloroplast DNA clearly indicate that the wild barley (H. vulgare ssp. spontaneum) as it is found today in the “Fertile Crescent” might not be the progenitor of the barley cultivated in Eritrea (and Ethiopia). Consequently, an independent domestication might have taken place at the Horn of Africa. Jihad Orabi and Gunter Backes have contributed equally to this work.  相似文献   

18.
To elucidate the origin of naked barley, molecular variation of the marker sKT7 tightly linked to the nud locus was examined. A total of 259 (53 wild, 106 hulled domesticated, and 100 naked domesticated) barley accessions were studied. Restriction analysis of the sKT7 PCR-amplified product revealed the alleles I, II, III, and IV. All four alleles were found in wild barley, but allele IV was found only in a single accession from southwestern Iran. Hulled domesticated accessions showed alleles I, II, or III, but all naked domesticated accessions had allele IV. The distribution of allele IV in wild barley and its pervasive presence in naked domesticated lines support the conclusion that naked barley has a monophyletic origin, probably in southwestern Iran. The available results suggest two scenarios for the origin of naked barley: either directly from a wild barley with allele IV or from a hulled domesticated line with allele IV that later became extinct. Naked domesticated accessions from different regions of the world have extremely homogeneous DNA sequences at the sKT7 locus, supporting the monophyletic origin of naked barley. For allele IV, four haplotypes (IVb to IVe) were found in 30 naked accessions: IVb was predominant (66.7%) and widely distributed, while the other three haplotypes, differing by only one nucleotide at different positions relative to IVb, showed a localized distribution. The geographical distribution of the haplotypes of sKT7 allele IV suggests migration routes of naked domesticated barley in central and eastern Asia.Communicated by F. Salamini  相似文献   

19.
Phenotypic variation in natural populations is the outcome of the joint effects of environmentally induced adaptations and neutral processes on the genetic architecture of quantitative traits. In this study, we examined the role of adaptation in shaping wild barley phenotypic variation along different environmental gradients. Detailed phenotyping of 164 wild barley (Hordeum spontaneum) accessions from Israel (of the Barley1K collection) and 18 cultivated barley (H. vulgare) varieties was conducted in common garden field trials. Cluster analysis based on phenotypic data indicated that wild barley in this region can be differentiated into three ecotypes in accordance with their ecogeographical distribution: north, coast and desert. Population differentiation (QST) for each trait was estimated using a hierarchical Bayesian model and compared to neutral differentiation (FST) based on 42 microsatellite markers. This analysis indicated that the three clusters diverged in morphological but not in reproductive characteristics. To address the issue of phenotypic variation along environmental gradients, climatic and soil gradients were compared with each of the measured traits given the geographical distance between sampling sites using a partial Mantel test. Flowering time and plant growth were found to be differentially correlated with climatic and soil characteristic gradients, respectively. The H. vulgare varieties were superior to the H. spontaneum accessions in yield components, yet resembled the Mediterranean types in vegetative characteristics and flowering time, which may indicate the geographical origin of domesticated barley.  相似文献   

20.
Seedlings of barley (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus cv. Line) were raised at 8 or 10 different extenral P concentrations in the range 0–2000 μM. Apart from P, the nutrient solutions were complete. Phosphate influx in roots of different P status was determined by use of a nutrient solution containing 0.1 mM32P-labelled phosphate. A double labelling technique was used for simultaneous determination of influx (33P) and efflux (32P) of phosphorus by roots of barley and rape with three selected P levels. Flux determinations were also done in presence of a metabolic uncoupler (2,4-dinitrophenol) and a protein synthesis inhibitor (cycloheximide). Influx of phosphate was maximal at a certin optimal P level of the roots and decreased at both lower and higher P levels. Maximum phosphate influex [μmol (g root)-?1 h?1] were: rape 4,4, buckwheat 2.2, barley cv. Salka 1.6, barley cv. Zita 1.5. Both Hill plots and plots of the untransformed decreasing phosphate influx vs root P concentrations above the optimal were linear and had high correlation coefficients. The Hill coefficient varied between -3.1 and -4.2. The decrease of phosphate influx from the maximum to the lowest value at the highest P concentration of the root was 60–70%. Hence, phosphate influex appeared to be regulated through negative feedback by the internal level of phosphorous in the roots. The regulation mechanism seems bascially similar for the three species and may be of an allosteric type. P efflux from roots of low and optimal (with regard to P influx) P status was 15–20% of the simultaneous P influx. Contary to P influx, P efflux increased at high P status and almost eliminated (barley) or halved (rape) net P uptake. 2,4-Dinitrophenol reduced both P influx and P efflux by low P roots and gave linearly increasing P efflux with increasing root P status. This indicates that P efflux partly occurred by counter transport and ion exchange at the uptake sites, partly by passive P efflux along an electrochemical potential gradient. Phosphate influx was not affected by inhibition of barley root growth with cycloheximide, but P efflux increased considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号