首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T Miwa  H Esaki  J Umemori    T Hino 《Applied microbiology》1997,63(6):2155-2158
Batch culture experiments showed that permeabilized cells and membranes of Ruminococcus albus and Fibrobacter succinogenes, acid-intolerant celluloytic bacteria, have only one-fourth to one-fifth as much H(+)-ATPase as Megasphaera elsdenii and Streptococcus bovis, which are relatively acid tolerant. Even in the cells grown in continuous culture at pH 7.0, the acid-intolerant bacteria contained less than half as much H(+)-ATPase as the acid-tolerant bacteria. The amounts of H(+)-ATPase in the acid-tolerant bacteria were increased by more than twofold when the cells were grown at the lowest pH permitting growth, whereas little increase was observed in the case of the acid-intolerant bacteria. These results indicate that the acid-intolerant bacteria not only contain smaller amounts of H(+)-ATPase at neutral pH but also have a lower capacity to enhance the level of H(+)-ATPase in response to low pH than the acid-tolerant bacteria. In addition, the H(+)-ATPases of the acid-intolerant bacteria were more sensitive to low pH than those of the acid-tolerant bacteria, although the optimal pHs were similar.  相似文献   

3.
In plants, the proton pump-ATPase (H(+)-ATPase) of the plasma membrane is encoded by a multigene family. The PMA2 (plasma membrane H(+)-ATPase) isoform from Nicotiana plumbaginifolia was previously shown to be capable of functionally replacing the yeast H(+)-ATPase, provided that the external pH was kept above pH 5.5. In this study, we used a positive selection to isolate 19 single point mutations of PMA2 which permit the growth of yeast cells at pH 4.0. Thirteen mutations were restricted to the C-terminus region, but another six mutations were found in four other regions of the enzyme. Kinetic studies determined on nine mutated PMA2 compared with the wild-type PMA2 revealed an activated enzyme characterized by an alkaline shift of the optimum pH and a slightly higher specific ATPase activity. However, the most striking difference was a 2- to 3-fold increase of H(+)-pumping in both reconstituted vesicles and intact cells. These results indicate that point mutations in various domains of the plant H(+)-ATPase improve the coupling between H(+)-pumping and ATP hydrolysis, resulting in better growth at low pH. Moreover, the yeast cells expressing the mutated PMA2 showed a marked reduction in the frequency of internal membrane proliferation seen with the strain expressing the wild-type PMA2, indicating a relationship between H(+)-ATPase activity and perturbations of the secretory pathway.  相似文献   

4.
With succinate as free-energy source, Escherichia coli generating virtually all ATP by oxidative phosphorylation might be expected heavily to tax its ATP generating capacity. To examine this the H(+)-ATPase (ATP synthase) was modulated over a 30-fold range. Decreasing the amount of H(+)-ATPase reduced the growth rate much less than proportionally; the H(+)-ATPase controlled growth rate by < 10%. This lack of control reflected excess capacity: the rate of ATP synthesis per H(+)-ATPase (the turnover number) increased by 60% when the number of enzymes was decreased by 40%. At 15% H(+)-ATPase, the enzyme became limiting and its turnover was increased even further, due to an increased driving force caused by a reduction in the total flux through the enzymes. At smaller reductions of [H(+)-ATPase] the total flux was not reduced, revealing a second cause for increased turnover number through increased membrane potential: respiration was increased, showing that in E.coli, respiration and ATP synthesis are, in part, inversely coupled. Indeed, growth yield per O2 decreased, suggesting significant leakage or slip at the high respiration rates and membrane potential found at low H(+)-ATPase concentrations, and explaining that growth yield may be increased by activating the H(+)-ATPase.  相似文献   

5.
The effect of aging on the plasma membrane (PM) H(+)-ATPase of red beet (Beta vulgaris L.) parenchyma discs was analyzed in PM purified by aqueous two-phase partitioning. Aging increased both the activity in the amount of immunodetectable H(+)-ATPase in the PM. The activity assayed at slightly alkaline pH values increased earlier and more strongly than that assayed at acidic pH values, so that the pH curve of the enzyme from aged beet discs was shifted toward more alkaline values. Aging decreased the stimulation of the PM H(+)-ATPase activity by controlled trypsin treatments or by lysophosphatidylcholine. After trypsin treatment the pH dependence of H(+)-ATPase from dormant or aged beet discs became equal. These results indicate that aging not only increases the level of H(+)-ATPase in the PM, but also determines its activation, most likely by modifying the interaction between the autoinhibitory carboxyl-terminal domain and the catalytic site. When the PM H(+)-ATPase activity was assayed at a slightly alkaline pH, the tyrosine modifier N-acetylimidazole inhibited the H(+)-ATPase in the PM from dormant beet discs much less than in the PM from aged discs, suggesting that modification of a tyrosine residue may be involved in the activation of the PM H(+)-ATPase induced by aging. The results are discussed with regard to aging-induced development of transmembrane transport activities.  相似文献   

6.
《Anaerobe》2000,6(3):197-203
In order to confirm that H+-ATPase plays an important role in the acid tolerance ofStreptococcus bovis , two mutants with low activities of H+-ATPase were isolated by use of ethyl methanesulfonate and neomycin resistance. The activity of H+-ATPase per cellular nitrogen was related to the lowest culture pH permitting growth. A mutant with little H+-ATPase activity (Mutant 2) was unable to grow below pH 5.5, which suggests that the intracellular pH should be maintained above 5.5 in S. bovis. Since lactate dehydrogenase activity, which is important for acid tolerance, was similar in parent and mutant strains, H+-ATPase activity is likely to affect acid tolerance. The amount of H+-ATPase protein as determined by Western-blot analysis with polyclonal antibody, was similar in Mutant 2 and its parent, indicating that H+-ATPase activity per enzyme protein is reduced by mutation. Probably, H+-ATPase synthesis was not changed by mutation. The gene encoding H+-ATPase of Mutant 2 had mutations at positions close to the ATP-binding motif A sequence in the β-subunit, which probably explains the reduced activity of H+-ATPase in this mutant. These results strongly support the assumption that H+-ATPase has a key role in the acid tolerance of S. bovis.  相似文献   

7.
Addition of glucose-related fermentable sugars or protonophores to derepressed cells of the yeast Saccharomyces cerevisiae causes a 3- to 4-fold activation of the plasma membrane H(+)-ATPase within a few minutes. These conditions are known to cause rapid increases in the cAMP level. In yeast strains carrying temperature-sensitive mutations in genes required for cAMP synthesis, incubation at the restrictive temperature reduced the extent of H(+)-ATPase activation. Incubation of non-temperature-sensitive strains, however, at such temperatures also caused reduction of H(+)-ATPase activation. Yeast strains which are specifically deficient in the glucose-induced cAMP increase (and not in basal cAMP synthesis) still showed plasma membrane H(+)-ATPase activation. Yeast mutants with widely divergent activity levels of cAMP-dependent protein kinase displayed very similar levels of activation of the plasma membrane H(+)-ATPase. This was also true for a yeast mutant carrying a deletion in the CDC25 gene. These results show that the cAMP-protein kinase A signaling pathway is not required for glucose activation of the H(+)-ATPase. They also contradict the specific requirement of the CDC25 gene product. Experiments with yeast strains carrying point or deletion mutations in the genes coding for the sugar phosphorylating enzymes hexokinase PI and PII and glucokinase showed that activation of the H(+)-ATPase with glucose or fructose was completely dependent on the presence of a kinase able to phosphorylate the sugar. These and other data concerning the role of initial sugar metabolism in triggering activation are consistent with the idea that the glucose-induced activation pathways of cAMP-synthesis and H(+)-ATPase have a common initiation point.  相似文献   

8.
9.
The plasma membrane proton pump ATPase (H(+)-ATPase) plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several physiological processes, such as cell expansion and salt tolerance. Its activity is regulated by a C-terminal autoinhibitory domain that can be displaced by phosphorylation and the binding of regulatory 14-3-3 proteins, resulting in an activated enzyme. To better understand the physiological consequence of this activation, we have analyzed transgenic tobacco (Nicotiana tabacum) plants expressing either wild-type plasma membrane H(+)-ATPase4 (wtPMA4) or a PMA4 mutant lacking the autoinhibitory domain (DeltaPMA4), generating a constitutively activated enzyme. Plants showing 4-fold higher expression of wtPMA4 than untransformed plants did not display any unusual phenotype and their leaf and root external acidification rates were not modified, while their in vitro H(+)-ATPase activity was markedly increased. This indicates that, in vivo, H(+)-ATPase overexpression is compensated by down-regulation of H(+)-ATPase activity. In contrast, plants that expressed DeltaPMA4 were characterized by a lower apoplastic and external root pH, abnormal leaf inclination, and twisted stems, suggesting alterations in cell expansion. This was confirmed by in vitro leaf extension and curling assays. These data therefore strongly support a direct role of H(+)-ATPase in plant development. The DeltaPMA4 plants also displayed increased salt tolerance during germination and seedling growth, supporting the hypothesis that H(+)-ATPase is involved in salt tolerance.  相似文献   

10.
Proton pumping of the vacuolar-type H(+)-ATPase into the lumen of the central plant organelle generates a proton gradient of often 1-2 pH units or more. Although structural aspects of the V-type ATPase have been studied in great detail, the question of whether and how the proton pump action is controlled by the proton concentration on both sides of the membrane is not understood. Applying the patch clamp technique to isolated vacuoles from Arabidopsis mesophyll cells in the whole-vacuole mode, we studied the response of the V-ATPase to protons, voltage, and ATP. Current-voltage relationships at different luminal pH values indicated decreasing coupling ratios with acidification. A detailed study of ATP-dependent H(+)-pump currents at a variety of different pH conditions showed a complex regulation of V-ATPase activity by both cytosolic and vacuolar pH. At cytosolic pH 7.5, vacuolar pH changes had relative little effects. Yet, at cytosolic pH 5.5, a 100-fold increase in vacuolar proton concentration resulted in a 70-fold increase of the affinity for ATP binding on the cytosolic side. Changes in pH on either side of the membrane seem to be transferred by the V-ATPase to the other side. A mathematical model was developed that indicates a feedback of proton concentration on peak H(+) current amplitude (v(max)) and ATP consumption (K(m)) of the V-ATPase. It proposes that for efficient V-ATPase function dissociation of transported protons from the pump protein might become higher with increasing pH. This feature results in an optimization of H(+) pumping by the V-ATPase according to existing H(+) concentrations.  相似文献   

11.
The BTN1 gene product of the yeast Saccharomyces cerevisiae is 39% identical and 59% similar to human CLN3, which is associated with the neurodegenerative disorder Batten disease. Furthermore, btn1-Delta strains have an elevated activity of the plasma membrane H(+)-ATPase due to an abnormally high vacuolar acidity during the early phase of growth. Previously, DNA microarray analysis revealed that btn1-Delta strains compensate for the altered plasma membrane H(+)-ATPase activity and vacuolar pH by elevating the expression of the two genes HSP30 and BTN2. We now show that deletion of either HSP30 or BTN2 in either BTN1(+) or btn1-Delta strains does not alter vacuolar pH but does lead to an increased activity of the vacuolar H(+)-ATPase. Deletion of BTN1, BTN2, or HSP30 does not alter cytosolic pH but diminishes pH buffering capacity and causes poor growth at low pH in a medium containing sorbic acid, a condition known to result in disturbed intracellular pH homeostasis. Btn2p was localized to the cytosol, suggesting a role in mediating pH homeostasis between the vacuole and plasma membrane H(+)-ATPase. Increased expression of HSP30 and BTN2 in btn1-Delta strains and diminished growth of btn1-Delta, hsp30-Delta, and btn2-Delta strains at low pH reinforce our view that altered pH homeostasis is the underlying cause of Batten disease.  相似文献   

12.
The Streptococcus faecalis H+-ATPase (F1 X F0 complex) level was elevated when the cytoplasmic pH was shifted below 7.5. The elevated level was attained by the increase in functional unit (F1 X F0 complex) in membranes, but not by the activation of the enzyme. Our data strongly suggested that the increase in enzyme arises from stimulation of enzyme biosynthesis. When calls growing at pH 7.6 were transferred to an acid medium with a pH below 7, the amount of H+-ATPase increased. The amount of H+-ATPase decreased to the basal level when the medium was alkalized again. Cytoplasmic pH was not controlled normally in cells where a change in the amount of H+-ATPase was inhibited. Based on these findings and previous data (Kobayashi, H. (1985) J. Biol. Chem. 260, 72-76), we propose a model for the regulatory mechanism of streptococcal cytoplasmic pH: the pH is regulated by changes in amount and activity of the H+-ATPase, which are dependent on the cytoplasmic pH.  相似文献   

13.
A factor that activates affinity-purified vacuolar H(+)-ATPase from bovine kidney microsomes was identified and partially purified from bovine kidney cytosol. The activator is a heat-stable, trypsin-sensitive acidic protein with a Mr by gel filtration of approximately 35,000. The activator increased the activity of renal microsomal and brush border H(+)-ATPase by over 60% but stimulated lysosomal H(+)-ATPase activity by only 28%; it had little or no activity against the remaining N-ethylmaleimide-insensitive ATPase in kidney microsomes and other transport ATPases. Stimulation of ATPase activity appeared to result from binding of the activator to the H(+)-ATPase. Activation was saturable, with a Hill coefficient of 1 at low protein concentrations. Both activator binding and stimulation of H(+)-ATPase activity were enhanced at pH values less than or equal to 6.5. The activator has selective effects on different H(+)-ATPases and is poised to activate the enzyme at low physiologic values of cytosolic pH; this newly identified cytosolic proteins may participate in the physiologic regulation of the vacuolar H(+)-ATPase.  相似文献   

14.
15.
Gastrin, somatostatin, H+/K(+)-ATPase and carbonic anhydrase are principal elements of acid secretion. We investigated in the conscious sheep the effect of 24 h omeprazole (an H+/K(+)-ATPase inhibitor) infusion on these elements at the level of synthesis, storage and secretion. Omeprazole inhibited acid secretion-pH increased from 3.0 to 7.1 at 24 h. Plasma amidated and glycine extended gastrin increased 3-fold while the ratio of amidated to glycine extended gastrins (4:1) remained unchanged. Despite the increase in circulating gastrin, antral gastrin concentration and mRNA did not change significantly. Gastrin-17 (amidated and glycine extended) was the predominant form in the circulation and antrum, although there were preferential increases in larger forms following omeprazole treatment. Omeprazole had no effect on somatostatin mRNA or peptide levels in the fundus. Similarly, plasma somatostatin remained unchanged. However, antral somatostatin increased significantly (63%) following omeprazole treatment accompanied by a 4-fold increase in its mRNA. Fundic H+/K(+)-ATPase mRNA was unchanged but a significant increase (87%) in carbonic anhydrase II mRNA was observed. Omeprazole induced hypergastrinaemia occurred without a measurable reduction in storage or increased synthesis of gastrin at 24 h. Increased antral somatostatin synthesis and storage may result from stimulation by plasma gastrin on antral D cells, independent of acid. The rise in carbonic anhydrase II mRNA in the absence of any change in H+/K(+)-ATPase mRNA may reflect the differential sensitivity of the genes encoding these two enzymes to the stimulatory action of gastrin.  相似文献   

16.
The effects of K+ on the phosphorylation of H+/K(+)-ATPase with inorganic phosphate were studied using H+/K(+)-ATPase purified from porcine gastric mucosa. The phosphoenzyme formed by phosphorylation with Pi was identical with the phosphoenzyme formed with ATP. The maximal phosphorylation level obtained with Pi was equal to that obtained with ATP. The Pi phosphorylation reaction of H+/K(+)-ATPase was, like that of Na+/K(+)-ATPase, a relatively slow reaction. The rates of phosphorylation and dephosphorylation were both increased by low concentrations of K+, which resulted in hardly any effect on the phosphorylation level. A decrease of the steady-state phosphorylation level was caused by higher concentrations of K+ in a noncompetitive manner, whereas no further increase in the dephosphorylation rate was observed. The decreasing effect was caused by a slow binding of K+ to the enzyme. All above-mentioned K+ effects were abolished by the specific H+/K(+)-ATPase inhibitor SCH 28080 (2-methyl-8-[phenyl-methoxy]imidazo-[1-2-a]pyrine-3-acetonitrile). Additionally, SCH 28080 caused a 2-fold increase in the affinity of H+/K(+)-ATPase for Pi. A model for the reaction cycle of H+/K(+)-ATPase fitting the data is postulated.  相似文献   

17.
在高温锻炼(37℃,2h)过程中,豌豆(Pisum sativum L.)叶片过氧化氢(H_2O_2)和游离态水杨酸(SA)含量与质膜ATP酶(H~ -ATPase)活性都有一个高峰,H_2O_2的迸发早于游离态SA的积累,而质膜H~ -ATPase活性高峰的出现则迟于SA高峰;活性氧清除剂、抗氧化剂、质膜NADPH氧化酶抑制剂和H_2O_2的淬灭剂预处理均可有效地阻止高温下H_2O_2和SA的积累以及质膜H~ -ATPase活性的增加。根据以上结果推测,H_2O_2、质膜H~ -ATPase和SA均参与耐热性诱导相关的信号传递,前者作用于SA的上游,而后者在SA下游起作用。  相似文献   

18.
【背景】工业菌株的耐酸能力是发酵过程中的一大挑战。粘质沙雷氏菌(Serratia marcescens)作为肠杆菌科的一种细菌,可生成2,3-丁二醇、乙偶姻和灵菌红素等高附加值产品。然而目前对于粘质沙雷氏菌酸耐受能力的分子机制尚不清楚。【目的】通过对转录调控因子XrpA的挖掘以及对其功能的研究,探究粘质沙雷氏菌酸耐受能力的分子机制,为改善工业菌株耐酸能力提供新的策略。【方法】通过对粘质沙雷氏菌进行转座子插入突变,构建了一个Tn5G转座子插入突变文库,利用文库筛选了一株酸敏感型突变株,并对其进行测序鉴定;同时还对突变菌株中与耐酸相关关键基因的转录水平以及细胞膜通透性、细胞膜完整性和H+-ATPase的活性变化进行检测。【结果】发现了一个响应酸胁迫的转录调控因子BVG9023400,其属于XRE超级家族转录调控因子,命名为XrpA。在酸性条件下,与野生型菌株(JNB5-1)相比,xrpA被阻断后导致了粘质沙雷氏菌多种表型的变化,其中包括生物量显著下降、H+-ATPase活性降低、细胞膜的通透性以及完整性受到破坏。【结论】XrpA影响粘质沙雷氏菌耐酸能力的分子机制是通过...  相似文献   

19.
20.
The superior ability of citrate excretion in a carrot (Daucus carota L.) mutant cell line, namely IPG (insoluble phosphate grower) [Takita et al. (1999a) Plant Cell Physiol. 40: 489] cells has been characterized in terms of citrate transport at the plasma membrane. IPG cells released about a 20-fold increase in citrate in comparison with malate, while the concentration of malate was only 35% lower than that of citrate in the cell sap. Citrate excretion was sensitive to anion channel blockers, such as niflumic acid and anthracene-9-carboxylic acid. These results indicate that IPG cells release citrate through the plasma membrane using citrate specific anion channels. The rate of citrate release from IPG cells was not affected by the concentration of aluminum (0 and 50 micro M), soluble P(i) (0 or 2 mM) and the pH (4.5-5.6) of the medium, suggesting that anion channels would not be regulated by such external conditions. Citrate excretion correlated with the H(+) efflux, possibly from the action of H(+)-ATPase on the plasma membrane. The activity of plasma membrane H(+)-ATPase was about three times higher in IPG cells than in wild-type cells, and might be involved in the high citrate excretion ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号