首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saponin detoxification enzymes from pathogenic fungi are involved in the infection process of their host plants. Fusarium oxysporum f. sp lycopersici, a tomato pathogen, produces the tomatinase enzyme Tom1, which degrades alpha-tomatine to less toxic derivates. To study the role of the tom1 gene in the virulence of F. oxysporum, we performed targeted disruption and overexpression of the gene. The infection process of tomato plants inoculated with transformants constitutively producing Tom1 resulted in an increase of symptom development. By contrast, tomato plants infected with the knockout mutants showed a delay in the disease process, indicating that Tom1, although not essential for pathogenicity, is required for the full virulence of F. oxysporum. Total tomatinase activity in the disrupted strains was reduced only 25%, leading to beta(2)-tomatine as the main hydrolysis product of the saponin in vitro. In silico analysis of the F. oxysporum genome revealed the existence of four additional putative tomatinase genes with identities to tomatinases from family 3 of glycosyl hydrolases. These might be responsible for the remaining tomatinase activity in the Deltatom1 mutants. Our results indicate that detoxification of alpha-tomatine in F. oxysporum is carried out by several tomatinase activities, suggesting the importance of these enzymes during the infection process.  相似文献   

2.
Ito S  Eto T  Tanaka S  Yamauchi N  Takahara H  Ikeda T 《FEBS letters》2004,571(1-3):31-34
Many fungal pathogens of tomato produce extracellular enzymes, collectively known as tomatinases, that detoxify the preformed antifungal steroidal glycoalkaloid alpha-tomatine. Tomatinase from the vascular wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici cleaves alpha-tomatine into the aglycon tomatidine (Td) and the tetrasaccharide lycotetraose (Lt). Although modes of action of alpha-tomatine have been extensively studied, those of Td and Lt are poorly understood. Here, we show that both Td and Lt inhibit the oxidative burst and hypersensitive cell death in suspension-cultured tomato cells. A tomatinase-negative F. oxysporum strain inherently non-pathogenic on tomato was able to infect tomato cuttings when either Td or Lt was present. These results suggest that tomatinase from F. oxysporum is required not only for detoxification of alpha-tomatine but also for suppression of induced defense responses of host.  相似文献   

3.
The steroidal glycoalkaloid alpha-tomatine which is present in tomato (Lycopersicum sculentum) is assumed to protect the plant against phytopathogenic fungi. We have isolated a gene from the fungal pathogen Fusarium oxysporum f. sp. lycopersici that is induced by this glycoalkaloid. This gene, designated panC, encodes a predicted protein with a molecular mass of 41 kDa that shows a high degree of sequence similarity to pantothenate synthetases from yeast, plants and bacteria. Recombinant PanC protein from F. oxysporum has been over-expressed in Escherichia coli and purified to homogeneity. It shows pantothenate synthetase activity in the presence of D-pantoate, beta-alanine and ATP. The panC gene from F. oxysporum functionally complements an E. coli panC mutant, demonstrating that the PanC protein functions in vivo as a pantothenate synthetase. Southern analysis of F. oxysporum genomic DNA from other formae speciales indicates that there is a single copy of the pantothenate syntethase gene in this fungus. The presence of a STRE consensus sequence (CCCCT) in the promoter region of the gene suggests that the induction of panC may be part of a cellular stress response triggered by alpha-tomatine.  相似文献   

4.
The antifungal compound alpha-tomatine, present in tomato plants, has been reported to provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a tomato pathogen, produces an extracellular enzyme inducible by alpha-tomatine. This enzyme, known as tomatinase, catalyzes the hydrolysis of alpha-tomatine into its nonfungitoxic forms, tomatidine and beta-lycotetraose. The maximal tomatinase activity in the fungal culture medium was observed after 48 h of incubation of germinated conidia at an alpha-tomatine concentration of 20 micrograms/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 35,000, and the enzyme was then purified to electrophoretic homogeneity by a procedure that includes preparative isoelectric focusing and preparative gel electrophoresis as main steps. The purification procedure had a yield of 18%, and the protein was purified about 40-fold. Tomatinase was found to be a monomer of 50 kDa by both native gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The analytical isoelectric focusing of the native tomatinase showed at least five isoforms with pIs ranging from 4.8 to 5.8. Treatment with N-glycosidase F gave a single protein band of 45 kDa, indicating that the 50-kDa protein was N glycosylated. Tomatinase activity was optimum at 45 to 50 degrees C and at pH 5.5 to 7. The enzyme was stable at acidic pH and temperatures below 50 degrees C. The enzyme had no apparent requirement for cofactors, although Co2+ and Mn2+ produced a slight stimulating effect on tomatinase activity. Kinetic experiments at 30 degrees C gave a K(m) of 1.1 mM for alpha-tomatine and a Vmax of 118 mumol/min/mg. An activation energy of 88 kJ/mol was calculated.  相似文献   

5.
Many plants produce constitutive antifungal molecules belonging to the saponin family of secondary metabolites, which have been implicated in plant defense. Successful pathogens of these plants must presumably have some means of combating the chemical defenses of their hosts. In the oat root pathogen Gaeumannomyces graminis, the saponin-detoxifying enzyme avenacinase has been shown to be essential for pathogenicity. A number of other phytopathogenic fungi also produce saponin-degrading enzymes, although the significance of these for saponin resistance and pathogenicity has not yet been established. The tomato leaf spot pathogen Septoria lycopersici secretes the enzyme tomatinase, which degrades the tomato steroidal glycoalkaloid alpha-tomatine. Here we report the isolation and characterization of tomatinase-deficient mutants of S. lycopersici following targeted gene disruption. Tomatinase-minus mutants were more sensitive to alpha-tomatine than the wild-type strain. They could, however, still grow in the presence of 1 mM alpha-tomatine, suggesting that nondegradative mechanisms of tolerance are also important. There were no obvious effects of loss of tomatinase on macroscopic lesion formation on tomato leaves, but trypan blue staining of infected tissue during the early stages of infection revealed more dying mesophyll cells in leaves that had been inoculated with tomatinase-minus mutants. Expression of a defense-related basic beta-1,3 glucanase gene was also enhanced in these leaves. These differences in plant response may be associated with subtle differences in the growth of the wild-type and mutant strains during infection. Alternatively, tomatinase may be involved in suppression of plant defense mechanisms.  相似文献   

6.
The interaction between tomato and Fusarium oxysporum f. sp. lycopersici has become a model system for the study of the molecular basis of disease resistance and susceptibility. Gene-for-gene interactions in this system have provided the basis for the development of tomato cultivars resistant to Fusarium wilt disease. Over the last 6 years, new insights into the molecular basis of these gene-for-gene interactions have been obtained. Highlights are the identification of three avirulence genes in F. oxysporum f. sp. lycopersici and the development of a molecular switch model for I-2, a nucleotide-binding and leucine-rich repeat-type resistance protein which mediates the recognition of the Avr2 protein. We summarize these findings here and present possible scenarios for the ongoing molecular arms race between tomato and F. oxysporum f. sp. lycopersici in both nature and agriculture.  相似文献   

7.
Fusarium oxysporum is an asexual fungus that inhabits soils throughout the world. As a species, F. oxysporum can infect a very broad range of plants and cause wilt or root rot disease. Single isolates of F. oxysporum, however, usually infect one or a few plant species only. They have therefore been grouped into formae speciales (f.sp.) based on host specificity. Isolates able to cause tomato wilt (f.sp. lycopersici) do not have a single common ancestor within the F. oxysporum species complex. Here we show that, despite their polyphyletic origin, isolates belonging to f.sp. lycopersici all contain an identical genomic region of at least 8 kb that is absent in other formae speciales and non-pathogenic isolates, and comprises the genes SIX1, SIX2 and SHH1. In addition, SIX3, which lies elsewhere on the same chromosome, is also unique for f.sp. lycopersici. SIX1 encodes a virulence factor towards tomato, and the Six1, Six2 and Six3 proteins are secreted in xylem during colonization of tomato plants. We speculate that these genes may be part of a larger, dispensable region of the genome that confers the ability to cause tomato wilt and has spread among clonal lines of F. oxysporum through horizontal gene transfer. Our findings also have practical implications for the detection and identification of f.sp. lycopersici.  相似文献   

8.
Secreted-in-xylem (SIX) proteins of the vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici are secreted during infection of tomato and function in virulence or avirulence. F. oxysporum formae speciales have specific host ranges but the roles of SIX proteins in diverse hosts are unknown. We identified homologs of F. oxysporum f. sp. lycopersici SIX1, SIX4, SIX8, and SIX9 in the genome of Arabidopsis infecting isolate Fo5176. A SIX4 homolog (termed Fo5176-SIX4) differed from that of F. oxysporum f. sp. lycopersici (Fol-SIX4) by only two amino acids, and its expression was induced during infection of Arabidopsis. Transgenic Arabidopsis plants constitutively expressing Fo5176-SIX4 had increased disease symptoms with Fo5176. Conversely, Fo5176-SIX4 gene knock-out mutants (Δsix4) had significantly reduced virulence on Arabidopsis, and this was associated with reduced fungal biomass and host jasmonate-mediated gene expression, the latter known to be essential for host symptom development. Full virulence was restored by complementation of Δsix4 mutants with either Fo5176-SIX4 or Fol-SIX4. Thus, Fo5176-SIX4 contributes quantitatively to virulence on Arabidopsis whereas, in tomato, Fol-SIX4 acts in host specificity as both an avirulence protein and a suppressor of other race-specific resistances. The strong sequence conservation for SIX4 in F. oxysporum f. sp. lycopersici and Fo5176 suggests a recent common origin.  相似文献   

9.
Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt, produces an array of pectinolytic enzymes, including at least two exo-alpha1,4-polygalacturonases (exoPGs). A gene encoding an exoPG, pgx4, was isolated with degenerate polymerase chain reaction primers derived from amino acid sequences conserved in two fungal exoPGs. pgx4 encodes a 454 amino acid polypeptide with nine potential N-glycosylation sites and a putative 21 amino acid N-terminal signal peptide. The deduced mature protein has a calculated molecular mass of 47.9 kDa, a pI of 8.0, and 51 and 49% identity with the exoPGs of Cochliobolus carbonum and Aspergillus tubingensis, respectively. The gene is present in a single copy in different formae speciales of F. oxysporum. Expression of pgx4 was detected during in vitro growth on pectin, polygalacturonic acid, and tomato vascular tissue and in roots and stems of tomato plants infected by F. oxysporum f. sp. lycopersici. Two mutants of F. oxysporum f. sp. lycopersici with a copy of pgx4 inactivated by gene replacement were as virulent on tomato plants as the wild-type strain.  相似文献   

10.
11.
The effect of nature of inoculum on disease induced by Fusarium oxysporum f.sp. lycopersici on tomato was tested. Chlamydospores produced in soil 30 days after inoculation induced a more severe disease than microconidia indicating a higher inoculum potential of chlamydospores.
The method proposed produces easily an inoculum of F. oxysporum f.sp. lycopersici which infects the plants consistently and induces a relatively high disease severity.  相似文献   

12.
13.
I-3-Mediated resistance of tomato against Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici depends on Six1, a protein that is secreted by the fungus during colonization of the xylem. Among natural isolates of F. oxysporum f. sp. lycopersici are several that are virulent on a tomato line carrying only the I-3 resistance gene. However, evasion of I-3-mediated resistance by these isolates is not correlated with mutation of the SIX1 gene. Moreover, the SIX1 gene of an I-3-virulent isolate was shown to be fully functional in that i) the gene product is secreted in xylem sap, ii) deletion leads to a further increase in virulence on the I-3 line as well as reduced virulence on susceptible lines, and iii) the gene confers full avirulence on the I-3 line when transferred to another genetic background. Remarkably, all I-3-virulent isolates were of race 1, suggesting a link between the presence of AVR1 and evasion of I-3-mediated resistance.  相似文献   

14.
15.
The actinomycete Streptomyces scabies 87-22 is the causal agent of common scab, an economically important disease of potato and taproot crops. Sequencing of the S. scabies 87-22 genome revealed the presence of a gene with high homology to the gene encoding the alpha-tomatine-detoxifying enzyme tomatinase found in fungal tomato pathogens. The tomA gene from S. scabies 87-22 was cotranscribed with a putative family 1 glycosyl hydrolase gene, and purified TomA protein was active only on alpha-tomatine and not potato glycoalkaloids or xylans. Tomatinase-null mutants were more sensitive to alpha-tomatine than the wild-type strain in a disk diffusion assay. Interestingly, tomatine affected only aerial mycelium and not vegetative mycelium, suggesting that the target(s) of alpha-tomatine is not present during vegetative growth. Severities of disease for tomato seedlings affected by S. scabies 87-22 wild-type and DeltatomA1 strains were indistinguishable, suggesting that tomatinase is not important in pathogenicity on tomato plants. However, conservation of tomA on a pathogenicity island in S. acidiscabies and S. turgidiscabies suggests a role in plant-microbe interaction.  相似文献   

16.
17.
Inoue I  Namiki F  Tsuge T 《The Plant cell》2002,14(8):1869-1883
The soil-borne fungus Fusarium oxysporum causes vascular wilts of a wide variety of plant species by directly penetrating roots and colonizing the vascular tissue. The pathogenicity mutant B60 of the melon wilt pathogen F. oxysporum f. sp. melonis was isolated previously by restriction enzyme-mediated DNA integration mutagenesis. Molecular analysis of B60 identified the affected gene, designated FOW1, which encodes a protein with strong similarity to mitochondrial carrier proteins of yeast. Although the FOW1 insertional mutant and gene-targeted mutants showed normal growth and conidiation in culture, they showed markedly reduced virulence as a result of a defect in the ability to colonize the plant tissue. Mitochondrial import of Fow1 was verified using strains expressing the Fow1-green fluorescent protein fusion proteins. The FOW1-targeted mutants of the tomato wilt pathogen F. oxysporum f. sp. lycopersici also showed reduced virulence. These data strongly suggest that FOW1 encodes a mitochondrial carrier protein that is required specifically for colonization in the plant tissue by F. oxysporum.  相似文献   

18.
Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions.  相似文献   

19.
The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号