首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPR spin trapping has been employed to directly detect radical production in isolated rat nuclei on exposure to a variety of hydroperoxides and related compounds which are known, or suspect, tumour promoters. The hydroperoxides, in the absence of reducing equivalents, undergo oxidative cleavage, generating peroxyl radicals. In the presence of NADPH (and to a lesser extent NADH) reductive cleavage of the OO bond generates alkoxyl radicals. These radicals undergo subsequent rearrangements and reactions (dependent on the structure of the alkoxyl radical), generating carbon-centred radicals. Acyl peroxides and peracids appear to undergo only reductive cleavage of the OO bond. With peracids this cleavage can generate aryl carboxyl (RCO2·) or hydroxyl radicals (HO·); with acyl peroxides, aryl carboxyl radicals are formed and, in the case of t-butyl peroxybenzoate, alkoxyl radicals (RO·). The radicals detected with each peroxide are similar in type to those detected in the rat liver microsomal fraction, although the extent of radical production is lower. The subsequent reactions of the initially generated radicals are similar to those determined in homogenous chemical systems, suggesting that they are in free solution. Experiments with NADPH/NADH, heat denaturation of the nuclei and various inhibitors suggest that radical generation is an enzymatic process catalysed by haemproteins, in particular cytochrome P-450, and that NADPH/cytochrome P-450 reductase is involved in the reductive cleavage of the OO bond. The generation of these radicals by the rat liver nuclear fraction is potentially highly damaging for the cell due to the proximity of the generating source to DNA. Several previous studies have shown that some of the radicals detected in this study, such as aryl carboxyl and aryl radicals, can damage DNA, via various reactions which results in the generation of strand breaks and adducts to DNA bases: these processes are suggested to play an important role in the tumour promoting activity of these hydroperoxides and related compounds.  相似文献   

2.
The reactions between Trolox C, a water-soluble vitamin E analogue, and several oxidizing free radicals including the hydroxyl radical and various peroxy radicals were examined by using the pulse-radiolysis technique. The results demonstrate that Trolox C may undergo rapid one-electron-transfer reactions as well as hydrogen-transfer processes; the resulting phenoxyl radical is shown to be relatively stable, in common with the phenoxyl radical derived from vitamin E. The reactions between the Trolox C phenoxyl radical and a variety of biologically relevant reducing compounds were examined by using both pulse radiolysis and e.s.r. The results demonstrate that the Trolox C phenoxyl radical is readily repaired by ascorbate (k = 8.3 x 10(6) dm3.mol-1.s-1) and certain thiols (k less than 10(5) dm3.mol-1.s-1) but not by urate, NADH or propyl gallate. Evidence from e.s.r. studies indicates that thiol-containing compounds may also enter into similar repair reactions with the alpha-tocopherol phenoxyl radical. Kinetic evidence is presented that suggests that Trolox C may 'repair' proteins that have been oxidized by free radicals.  相似文献   

3.
Osteoarthritis (OA) is one of the most common chronic diseases, with increasing importance due to increased life expectancy. On a cellular level, the pathophysiology of joint function impairment and ultimate destruction associated with OA remains poorly understood. Free radicals are highly reactive molecules involved in both normal intracellular signal transduction and degenerative cellular processes. An imbalance between the free radical burden and cellular scavenging mechanisms, defined as oxidative stress, has been identified as a relevant factor in OA pathogenesis. This literature review elucidates the involvement of nitrosative and oxidative stress in cellular ageing in joints, cell senescence, and apoptosis. Free radical exposure is known to promote cellular senescence and apoptosis, and the involvement of radical oxygen species (ROS) in inflammation, fibrosis control, and pain nociception has been proven. A relatively novel approach to OA pathophysiology considers the joint to be a dynamic system consisting of 3, continuously interacting compartments, cartilage, synovial tissue, and subchondral bone. Current knowledge concerning free radical involvement in paracrine signalling in OA is reviewed. The interrelationship between oxidative imbalances and OA pathophysiology may provide a novel approach to the comprehension, and therefore modification, of OA disease progression and symptom control.  相似文献   

4.
Three curcumin analogues viz., bisdemethoxy curcumin, monodemethoxy curcumin, and dimethoxycurcumin that differ at the phenolic substitution were synthesized. These compounds have been subjected for free radical reactions with DPPH radicals, superoxide radicals (O(2)(?-)), singlet oxygen ((1)O(2)) and peroxyl radicals (CCl(3)O(2)(?)) and the bimolecular rate constants were determined. The DPPH radical reactions were followed by stopped-flow spectrometer, (1)O(2) reactions by transient luminescence spectrometer, and CCl(3)O(2)(?) reactions using pulse radiolysis technique. The rate constants indicate that the presence of o-methoxy phenolic OH increases its reactivity with DPPH and CCl(3)O(2)(?), while for molecules lacking phenolic OH, this reaction is very sluggish. Reaction of O(2)(?-) and (1)O(2) with curcumin analogues takes place preferably at β-diketone moiety. The studies thus suggested that both phenolic OH and the β-diketone moiety of curcumin are involved in neutralizing the free radicals and their relative scavenging ability depends on the nature of the free radicals.  相似文献   

5.
Production of oxygen free radicals is a natural consequence of aerobic metabolism and they are constantly generated in vivo by chemical reactions and metabolic processes. Antioxidant defence systems scavenge and minimise the formation of oxygen-radical-derived biochemical products, however, these defences are not completely effective even under normal physiological conditions. In pathologic situations, oxygen free radicals can be generated in excess of a cell's antioxidant capacity resulting in severe damage to cellular constituents including proteins, DNA and lipids. The inherent biochemical and physiological charateristics of the brain, including high lipid concentrations and energy requirements, make it particularly susceptible to free radical mediated insult. Increasing evidence indicates that many neurological disorders may have components of free radical and oxidative stress induce injury.  相似文献   

6.
Free radical tissue damage: protective role of antioxidant nutrients   总被引:26,自引:0,他引:26  
Highly reactive molecules called free radicals can cause tissue damage by reacting with polyunsaturated fatty acids in cellular membranes, nucleotides in DNA, and critical sulfhydryl bonds in proteins. Free radicals can originate endogenously from normal metabolic reactions or exogenously as components of tobacco smoke and air pollutants and indirectly through the metabolism of certain solvents, drugs, and pesticides as well as through exposure to radiation. There is some evidence that free radical damage contributes to the etiology of many chronic health problems such as emphysema, cardiovascular and inflammatory diseases, cataracts, and cancer. Defenses against free radical damage include tocopherol (vitamin E), ascorbic acid (vitamin C), beta-carotene, glutathione, uric acid, bilirubin, and several metalloenzymes including glutathione peroxidase (selenium), catalase (iron), and superoxide dismutase (copper, zinc, manganese) and proteins such as ceruloplasmin (copper). The extent of tissue damage is the result of the balance between the free radicals generated and the antioxidant protective defense system. Several dietary micronutrients contribute greatly to the protective system. Based on the growing interest in free radical biology and the lack of effective therapies for many of the chronic diseases, the usefulness of essential, safe nutrients in protecting against the adverse effects of oxidative injury warrants further study.  相似文献   

7.
Plant senescence processes and free radicals   总被引:9,自引:0,他引:9  
Free radicals acting at sensitive subcellular sites, appear to play a pivotal role in both the deleterious and beneficial effects of maturation and senescence of various plant organs--leaves, flowers, and fruit. As evidenced by ESR spectrometry, spin trapping, specific membrane phase transition studies and enzyme kinetics, an important factor in the above processes appears to be lipoxygenase activity producing polyunsaturated fatty acid (PUFA) hydroperoxides and subsequently several free radical species and senescence-promoting compounds such as ethylene, malondialdehyde and jasmonic acid. The most intensely investigated are the oxy-free radical species including O2-., .OH, RO., ROO., PUFA and semiquinone free radicals. Higher plants are equipped with ways and means to combat free radicals and these may be classified under two general headings; (a) direct scavengers including SOD, ascorbic acid, and alpha-tocopherol acting in concert (b) incipient preventative mechanisms against radical formation, these include xanthine oxidase inhibitors, strategies based on endogenous H2O2 disposal in the form of peroxidative enzymes and glutathione turnover, and Ca2+ channel blockers. The antisenescence phytohormone cytokinin appears to possess a dual effect and may act in both capacities. The special case of delayed free radical formation in comparatively dry biological systems such as seeds is detailed, and specific free radical-generating photosensitizer compounds are also discussed.  相似文献   

8.
There is presently an intense discussion if electromagnetic field (EMF) exposure has consequences for human health. This include exposure to structures and appliances that emit in the extremely low frequency (ELF) range of the electromagnetic spectrum, as well as emission coming from communication devices using the radiofrequency part of the spectrum. Biological effects of such exposures have been noted frequently, although the implication for specific health effects is not that clear. The basic interaction mechanism(s) between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. In addition, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. Although 50/60 Hz EMF do not directly lead to genotoxic effects, it is possible that certain cellular processes altered by exposure to EMF indirectly affect the structure of DNA causing strand breaks and other chromosomal aberrations. The aim of this article is to present a hypothesis of a possible initial cellular event affected by exposure to ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation by means of increasing levels of free radicals. Such a general activation is compatible with the diverse nature of observed effects. Free radicals are intermediates in natural processes like mitochondrial metabolism and are also a key feature of phagocytosis. Free radical release is inducible by ionizing radiation or phorbol ester treatment, both leading to genomic instability. EMF might be a stimulus to induce an "activated state" of the cell such as phagocytosis, which then enhances the release of free radicals, in turn leading to genotoxic events. We envisage that EMF exposure can cause both acute and chronic effects that are mediated by increased free radical levels: (1) Direct activation of, for example macrophages (or other cells) by short-term exposure to EMF leads to phagocytosis (or other cell specific responses) and consequently, free radical production. This pathway may be utilized to positively influence certain aspects of the immune response, and could be useful for specific therapeutic applications. (2) EMF-induced macrophage (cell) activation includes direct stimulation of free radical production. (3) An increase in the lifetime of free radicals by EMF leads to persistently elevated free radical concentrations. In general, reactions in which radicals are involved become more frequent, increasing the possibility of DNA damage. (4) Long-term EMF exposure leads to a chronically increased level of free radicals, subsequently causing an inhibition of the effects of the pineal gland hormone melatonin. Taken together, these EMF induced reactions could lead to a higher incidence of DNA damage and therefore, to an increased risk of tumour development. While the effects on melatonin and the extension of the lifetime of radicals can explain the link between EMF exposure and the incidence of for example leukaemia, the two additional mechanisms described here specifically for mouse macrophages, can explain the possible correlation between immune cell system stimulation and EMF exposure.  相似文献   

9.
Mitochondria were classically recognized as the organelles that produce the energy required to drive the endergonic processes of cell life, but now they are considered as the most important cellular source of free radicals, as the main target for free radical regulatory and toxic actions, and as the source of signaling molecules that command cell cycle, proliferation and apoptosis. The progress in the knowledge of mitochondrial functions in the last decades is reviewed. The mitochondrial production of the primary free radicals superoxide anion (O(2)(-)) and nitric oxide (NO), as well as of the termination products H(2)O(2) (hydrogen peroxide) and peroxynitrite (ONOO(-)), is described. A network of intramitochondrial antioxidants consisting of the enzymes Mn-superoxide dismutase and glutathione peroxidase and of the reductants NADH(2), ubiquinol and reduced glutathione, is operative in minimizing the potentially harmful effects of O(2)(-), NO, H(2)O(2) and ONOO(-). Nitric oxide and H(2)O(2) participate in cell signaling, through narrow concentration ranges that signal for opposite cellular situations, i.e., proliferation or apoptosis. A mechanism involving mitogen-activated protein kinases is described. The role of mitochondria in apoptosis is well established through the mitochondrion-dependent pathways of cell death, that includes increased NO production, loss of membrane potential, appearance of dysfunctional mitochondria, cytochrome c release and opening of the voltage-dependent anion channel of the outer membrane.  相似文献   

10.
Free radicals derived from reactive oxygen species and reactive nitrogen species are generated in our body by normal cellular metabolism which is enhanced under stress conditions. The most vulnerable biological targets of free radicals are cell structures including proteins, lipids and nucleic acids. Since antioxidants synthesized in the body are not sufficient under oxidative stress, their exogenous supply is important to prevent the body from free radical-induced injury. Recent researches have shown that antioxidants of plant origin with free radical scavenging property could have great importance as therapeutic agents in management of oxidative stress. Mangrove plants growing in inhospitable environment of the intertidal regions of land and sea in tropics and sub-tropics are equipped with very efficient free radical scavenging system to withstand the variety of stress conditions. These mangrove plants possess variety of phytochemical and are rich in phenolic compounds such as flavonoids, isoflavones, flavones, anthocyanins, coumarins, lignans, catechins, isocatechins, etc., which served as source of antioxidants. Isolation and identification of these antioxidant compounds offer great potential for their pharmaceutical exploitations. However, no comprehensive literature is available on antioxidants’ studies in mangrove plants in particular. Hence, the present review discusses the antioxidant potential of mangrove plants with its specific role under salt stress as well as the progress made so far in evaluation of antioxidant activities of different mangrove species.  相似文献   

11.
Iron can be a detrimental catalyst in biological free radical oxidations. Because of the high physiological ratio of [O2]/[H2O2] (> or = 10(3)), we hypothesize that the Fenton reaction with pre-existing H2O2 is only a minor initiator of free radical oxidations and that the major initiators of biological free radical oxidations are the oxidizing species formed by the reaction of Fe2+ with dioxygen. We have employed electron paramagnetic resonance spin trapping to examine this hypothesis. Free radical oxidation of: 1) chemical (ethanol, dimethyl sulfoxide); 2) biochemical (glucose, glyceraldehyde); and 3) cellular (L1210 murine leukemia cells) targets were examined when subjected to an aerobic Fenton (Fe2+ + H2O2 + O2) or an aerobic (Fe2+ + O2) system. As anticipated, the Fenton reaction initiates radical formation in all the above targets. Without pre-existing H2O2, however, Fe2+ and O2 also induce substantial target radical formation. Under various experimental ratios of [O2]/[H2O2] (1-100 with [O2] approximately 250 microM), we compared the radical yield from the Fenton reaction vs. the radical yield from Fe2+ + O2 reactions. When [O2]/[H2O2] < 10, the Fenton reaction dominates target molecule radical formation; however, production of target-molecule radicals via the Fenton reaction is minor when [O2]/[H2O2] > or = 100. Interestingly, when L1210 cells are the oxidation targets, Fe2+ + O2 is observed to be responsible for formation of nearly all of the cell-derived radicals detected, no matter the ratio of [O2]/[H2O2]. Our data demonstrate that when [O2]/[H2O2] > or = 100, Fe2+ + O2 chemistry is an important route to initiation of detrimental biological free radical oxidations.  相似文献   

12.
The ESR spectra of the free radicals formed by the autoxidation of serotonin, 5-hydroxyindole, and 5-hydroxytryptophan in 1 N NaOH are presented. The analysis of the hyperfine splitting constants in H2O and D2O characterize these free radicals as semiquinone-imines, the one-electron oxidation product of the corresponding indole. At alkaline pH, autoxidation of these compounds ultimately leads to solid precipitate and unresolved ESR spectra characteristic of polymeric material. The reduction of cytochrome c at pH 7.4 by a wide variety of indoles correlates with the amplitude of the ESR signal in 1 N NaOH, as do other processes thought to be related to 5-hydroxyindole free radical formation. Relative to the rate of cytochrome c reduction, neither serotonin nor the serotonin free radical appears to react with oxygen to form superoxide. In the presence of NAD(P)H, the serotonin radical most probably oxidizes NAD(P)H to form the NAD(P). radical. The NAD(P). radical then reacts with oxygen to form superoxide, which ultimately reduces cytochrome c.  相似文献   

13.
The importance of free radicals and catalytic metal ions in human diseases   总被引:30,自引:0,他引:30  
The study of free radical reactions is not an isolated and esoteric branch of science. A knowledge of free radical chemistry and biochemistry is relevant to an understanding of all diseases and the mode of action of all toxins, if only because diseased or damaged tissues undergo radical reactions more readily than do normal tissues. However it does not follow that because radical reactions can be demonstrated, they are important in any particular instance. We hope that the careful techniques needed to assess the biological role of free radicals will become more widely used.  相似文献   

14.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

15.
Quantitative 31P NMR spin trapping techniques can be used as effective tools for the detection and quantification of many free radical species. Free radicals react with a nitroxide phosphorus compound, 5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide (DIPPMPO), to form stable radical adducts, which are suitably detected and accurately quantified using (31)P NMR in the presence of phosphorus containing internal standards. Initially, the 31P NMR signals for the radical adducts of oxygen-centered (*OH, O2*-) and carbon-centered (*CH3, *CH2OH, CH2*CH2OH) radicals were assigned. Subsequently, the quantitative reliability of the developed technique was demonstrated under a variety of experimental conditions. The 31P NMR chemical shifts for the hydroxyl and superoxide reaction adducts with DIPPMPO were found to be 25.3, 16.9, and 17.1 ppm (in phosphate buffer), respectively. The 31P NMR chemical shifts for *CH3, *CH2OH, *CH(OH)CH3, and *C(O)CH3 spin adducts were 23.1, 22.6, 27.3, and 30.2 ppm, respectively. Overall, this effort forms the foundations for a targeted understanding of the nature, identity, and mechanisms of radical activity in a variety of biomolecular processes.  相似文献   

16.
《Free radical research》2013,47(1-3):3-10
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   

17.
The detection of protein free radicals using the specific free radical reactivity of nitrone spin traps in conjunction with nitrone-antibody sensitivity and specificity greatly expands the utility of the spin trapping technique, which is no longer dependent on the quantum mechanical electron spin resonance (ESR). The specificity of the reactions of nitrone spin traps with free radicals has already made spin trapping with ESR detection the most universal, specific tool for the detection of free radicals in biological systems. Now the development of an immunoassay for the nitrone adducts of protein radicals brings the power of immunological techniques to bear on free radical biology. Polyclonal antibodies have now been developed that bind to protein adducts of the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In initial studies, anti-DMPO was used to detect DMPO protein adducts produced on myoglobin and hemoglobin resulting from self-peroxidation by H2O2. These investigations demonstrated that myoglobin forms the predominant detectable protein radical in rat heart supernatant, and hemoglobin radicals form inside red blood cells. In time, all of the immunological techniques based on antibody-nitrone binding should become available for free radical detection in a wide variety of biological systems.  相似文献   

18.
The role of free radicals and active states of oxygen in human cancer is as yet unresolved. Various lines of evidence provide strong but inferential evidence that free radical reactions can be of crucial importance in certain carcinogenic mechanisms. A central point in considering free radical reactions in carcinogenesis is that human cancer is really a group of highly diverse diseases for which the initial causation and the progression to clinical disease occur through a wide variety of mechanisms. Furthermore, for many human cancers it appears that there are alternate pathways capable of tumor initiation and tumor progression. While for certain of these pathways free radical reactions appear necessary, it is unlikely that there are human cancers for which free radicals, or any other mechanism, are sufficient for the entire processbeginning with the genetic alteration leading to a somatic mutation and eventually resulting in clinically overt disease. It is crucial that we view free radical reactions as aong a panoply of mechanisms leading to human cancer, and consider research about the role of free radicals in cancer as opportunities to prevent the initiation or progression of human cancer.  相似文献   

19.
Free radical involvement in hypertrophic scar formation   总被引:4,自引:0,他引:4  
Hypertrophic scarring following thermal injury has become a major problem in Hong Kong. There is evidence that immunological and biochemical changes are associated with thermal injury, including pyridinoline crosslinks which are present in large quantities in hypertrophic scar, but the primary cause of hypertrophic scar formation still remains to be established. It has been reported that free radicals are assosciated with the formation of pyridinoline. In this study, attempts have been made to elucidate the involvement of free radicals in hypertrophic scar formation after thermal injury by determining the concentrations of Complement, free iron and pyridinoline crosslinks in collagen fibres. The results showed that the Complement activation product, C3d, was increased in the first week (i.e., day 7) postburn, indicating an acute inflammatory response. Free radicals, reported to be associated with the formation of pyridinoline crosslinks, and free iron content, were also found to have higher concentration in hypertrophic scar than in normal skin. The data suggest the involvement of free radical in hypertrophic scar formation. The observed increase in serum C3d concentration in about the first week indicates an acute inflammatory response to thermal injury. Both C3d and free iron concentrations (in vitro) are found higher in hypertrophic scar than in normal skin may suggest their roles in the generation of free radicals.  相似文献   

20.
Reactive Oxygen Species and the Central Nervous System   总被引:76,自引:0,他引:76  
Radicals are species containing one or more unpaired electrons, such as nitric oxide (NO.). The oxygen radical superoxide (O2.-) and the nonradical hydrogen peroxide (H2O2) are produced during normal metabolism and perform several useful functions. Excessive production of O2.- and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxyl radical (.OH) and other oxidants in the presence of "catalytic" iron or copper ions. An important form of antioxidant defense is the storage and transport of iron and copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e.g., by ischemia or trauma, can cause increased metal ion availability and accelerate free radical reactions. This may be especially important in the brain because areas of this organ are rich in iron and CSF cannot bind released iron ions. Oxidative stress on nervous tissue can produce damage by several interacting mechanisms, including increases in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminum and in damage to the substantia nigra in patients with Parkinson's disease are reviewed. Finally, the nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be used in the design of antioxidants for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号