首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chloro complexes trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4, react with 1-alkynes HC---C---R in the presence of NEt3 to afford the corresponding acetylide derivatives trans-[Pt(Me) (C---C---R) (PPh3)2] (R = p-tolyl (1), Ph (2), C(CH3)3 (3)). These complexes, with the exception of the t-butylacetylide complex, react with the chloroalcohols HO(CH2)nCl (n = 2, 3) in the presence of 1 equiv. of HBF4 to afford the alkyl(chloroalkoxy)carbene complexes trans-[Pt(Me) {C[O(CH2)nCl](CH2R) } (PPh3)2][BF4] (R = p-tolyl, N = 2 (4), N = 3 (5); R=Ph, N = 2 (6)). A similar reaction of the bis(acetylide) complex trans-[Pt(C---C---Ph)2(PMe2Ph)2] with 2 equiv. HBF4 and 3-chloro-1-propanol affords trans-[Pt(C---CPh) {C(OCH2CH2CH2Cl)(CH2Ph) } (PMe2Ph)2][BF4] (7). T alkyl(chloroalkoxy)-carbene complex trans-[Pt(Me) {C(OCH2CH2Cl)(CH2Ph) } (PPh3)2][BF4] (8) is formed by reaction of trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4 in HOCH2CH2Cl, with phenylacetylene in the presence of 1 equiv. of n-BuLi. The reaction of the dimer [Pt(Cl)(μ-Cl)(PMe2Ph)]2 with p-tolylacetylene and 3-chloro-1-propanol yields cis-[PtCl2{C(OCH2CH2CH2Cl)(CH2C6H4-p-Me}(PMe2Ph)] (9). The X-ray molecular structure of (8) has been determined. It crystallizes in the orthorhombic system, space group Pna21, with a = 11.785(2), B = 29.418(4), C = 15.409(3) Å, V = 4889(1) Å3 and Z = 4. The carbene ligand is perpendicular to the Pt(II) coordination plane; the PtC(carbene) bond distance is 2.01(1) Å and the short C(carbene)-O bond distance of 1.30(1) Å suggests extensive electronic delocalization within the Pt---C(carbene)---O moietry.  相似文献   

2.
The enthalpies of reaction of HMo(CO)3C5R5 (R = H, CH3) with diphenyldisulfide producing PhSMo(CO)3C5R5 and PhSH have been measured in toluene and THF solution (R = H, ΔH= −8.5 ± 0.5 kcal mol−1 (tol), −10.8 ± 0.7 kcal mol−1 (THF); R = CH3, ΔH = −11.3±0.3 kcal mol−1 (tol), −13.2±0.7 kcal mol−1 (THF)). These data are used to estimate the Mo---SPh bond strength to be on the order of 38–41 kcal mol−1 for these complexes. The increased exothermicity of oxidative addition of disulfide in THF versus toluene is attributed to hydrogen bonding between thiophenol produced in the reaction and THF. This was confirmed by measurement of the heat of solution of thiophenol in toluene and THF. Differential scanning calorimetry as well as high temperature calorimetry have been performed on the dimerization and subsequent decarbonylation reactions of PhSMo(CO)3Cp yielding [PhSMo(CO)2Cp]2 and [PhSMo(CO)Cp]2. The enthalpies of reaction of PhSMo(CO)3Cp and [PhSMo(CO)2Cp]2 with PPh3, PPh2Me and P(OMe)3 have also been measured. The disproportionation reaction: 2[PhSMo(CO)2Cp]2 → 2PhSMo(CO)3Cp + [PhSMP(CO)Cp]2 is reported and its enthalpy has also been measured. These data allow determination of the enthalpy of formation of the metal-sulfur clusters [PhSMo(CO)nC5H5]2, N = 1,2.  相似文献   

3.
Complexes RuCl3(PPh3)L2 (L = MeIm (1a, Im (1b)) and [RuCl2(PPh3)2(bipy)]Cl·4H2O (2) have been synthesized via the ruthenium(III) precursor RuCl3(PPh3)2 (DMA), and characterized, including an X-ray structural analysis for 1a (MeIm = N-methylimidazole, Im = imidazole, bipy = 2,2′-bipyridyl, and DMA = N, N′-dimethylacetamide). Crystals of 1a are monoclinic, space group P21/n, A = 10.5491(5), B = 20.4934(9), C = 12.8285(4) Å, β = 90.166(4)°, Z = 4. The structure, which reveals a mer configuration for the chlorides, and cis-methylimidazoles, was solved by conventional heavy atom methods and was refined by full-matrix least-square procedures to R = 0.041 and Rw = 0.042 for 3328 reflections with I 3σ(I). From the RuCl2(PPh3)3 precursor, the ruthenium(II) complexes RuCl2(PPh3)2L2 and [RuCl(PPh3)L4]Cl have been made (L = Im or MeIm), while [RuCl(dppb)Im3]Cl has been made from [RuCl2(dppb)]2(μ-dppb) (dppb = Ph2P(CH2)4PPh2).  相似文献   

4.
Two new dicyanamide bridged 1D polynuclear copper(II) complexes [Cu(L1){μ1,5-N(CN)2}]n (1) [L1H = C6H5C(O)NHNC(CH3)C5H4N] and [Cu(L2){μ1,5-N(CN)2}]n (2) [L2H=C6H5C(O)CHC(CH3)NCH2CH2N(CH3)2] have been synthesised and structures of both the complexes and their crystal packing arrangements have been established by X-ray crystallography. For complex 1, a tridentate hydrazone ligand (L1H) obtained by the condensation of benzhydrazide and 2-acetylpyridine is used, whereas a tridentate Schiff base (L2H) derived from benzoylacetone and 2-dimethylaminoethylamine is employed for the preparation of complex 2. Variable temperature magnetic susceptibility measurement studies indicate there are weak antiferromagnetic interactions with J values −0.10 and −1.41 cm−1 for 1 and 2, respectively.  相似文献   

5.
Cis(or trans)-[RuCl2(CO)2(PPh3)2] react with two and one equivalents of AgBF4 to give the recently reported [Ru(CO)2(PPh3)2][BF4]2·CH2Cl2 (1) and novel [RuCl(CO)2(PPh3)2][BF4] · 1/2 CH2Cl2 (2), respectively. Cis-[RuCl2(CO)2(PPh3)2] also reacts with two equivalents of AgBF4 in the presence of CO to give [Ru(CO)3(PPh3)2][BF4]2 (3). Reactions of 1 and 2 with NaOMe and CO at 1 atm produce the carbomethoxy species [Ru(COOMe)2(CO)2(PPh3)2] (4) and [RuCl(COOMe)(CO)2(PPh3)2] (5), respectively. Complex 4 can also be formed from the reaction of 3 with NaOMe and CO. Alternatively, 4 is formed from cis-[RuCl2(CO)2(PPh3)2] with NaOMe and CO at elevated pressure (10 atm); if these reactants are refluxed under 1 atm of CO, [Ru(CO)3(PPh3)2] is the product. The reaction of [RuCl(CO)3(PPh3)2][AlCl4] with NaOMe provides an alternative route to the preparation of 5, but the product is contaminated with [RuCl2(CO)2(PPh3)2]. Compounds 1. 2, 4 and 5 have been characterised by IR, 1H NMR and analysis, whilst the formulation of 3 is proposed from spectroscopic data only. This account also examines the reactivity of [Ru(CO)2(PPh3)2][BF4]2 · CH2Cl2 with NaBH4, conc. HCl, KI and, finally, MeCOONa in the presence of CO. The products of these reactions, namely cis-[RuH2(CO)2(PPh3)2], cis-[RuCl2(CO)2(PPh3)2], cis-[RuI2(CO)2(PPh3)2] and [Ru(OOCMe)2(CO)2(PPh3)2], have been identified by comparison of their spectra with previous literature.  相似文献   

6.
The reactions of cadmium halides with the 15-membered macrocyclic crown ethers, 15-crown-5 and benzo-15-crown-5, have been carried out and six new complexes have been isolated and structurally characterized. Metal to ligand stoichiometries of 1:1, 2:1, 3:1 and 3:2 have been observed with a variety of different formulations. Examples of charge separated ion pairs ([(NH4)(benzo-15-crown-5)2]2[Cd2I6]), halogen bridged monomers, dimers or polymers ([Cd(15-crown-5)(OHMe)(μ-Br)CdBr3], [Cd(15-crown-5)(μ-Br)2CdBr(μ-Br)]2(isolated from the same reaction mixture) and [(CdCl2)2CdCl2(15-crown-5)]n), and hydrogen bonded finite chains or polymers ([(Cd(OH2)2(15-crown-5)][CdI3(OH2)]2·2(15-crown-5)·2CH3CN and [CdI2(OH2)2(THF)]·benzo-15-crown-5) have been isolated. Three different types of 15-crown-5 coordination modes have been observed in these complexes. In-cavity coordination resulting in pentagonal bipyramidal geometries about Cd2+ was observed in [(CdCl2)2CdCl2(15-crown-5)]n, [Cd(15-crown-5)(OHMe)(μ-Br)CdBr3], and [Cd(OH2)2(15-crown-5)][CdI3(OH2)]2·2(15-crown-5)·2CH3CN, [Cd(15-crown-5)(μ-Br)2CdBr(μ-Br)]2 displays out-of-cavity coordination with one etheric donor distorted into an axial position of a distorted pentagonal bipyramid. The third coordination mode is secondary sphere coordination via hydrogen bonding which is observed for [Cd(OH2)2(15-crown-5)][CdI3(OH2)]2·2(15-crown-5)·2CH3CN. The good fit of Cd2+ within the cavity of 15-crown-5 results in shorter bonding contacts and a more narrow distribution in Cd---O values (2.273(7)-2.344(6) Å) than observed for cadmium halide complexes of 18-crown-6 (Cd---O = 2.69(1)–2.81(1) Å).  相似文献   

7.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

8.
[Fe(TIM)(CH3CN)2](PF6)2 (1) (TIM = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclodeca-1,3,8,10-tetraene) forms a complex with NO reversibly in CH3CN (53±1% converted to the NO complex) or 60% CH3OH/40% CH3CN (81±1% conversion). Quantitative NO complexation occurs in H2O or CH3OH solvents. The EPR spectrum of [Fe(TIM)(solvent)NO]2+ in frozen 60/40 CH3OH/CH3CN at 77 K shows a three line feature at g=2.01, 1.99 and 1.97 of an S=1/2FeNO7 ground state. The middle line exhibits a three-line N-shf coupling of 24 G indicating a six-coordinate complex with either CH3OH or CH3CN as a ligand trans to NO. In H2O [Fe(TIM)(H2O)2]2+ undergoes a slow decomposition, liberating 2,3-butanedione, as detected by 1H NMR in D2O, unless a π-acceptor axial ligand, L=CO, CH3CN or NO is present. An equilibrium of 1 in water containing CH3CN forms [Fe(TIM)(CH3CN)(H2O)]2+ which has a formation constant KCH3CN=320 M−1. In water KNOKCH3CN since NO completely displaces CH3CN. [Fe(TIM)(CH3CN)2]2+ binds either CO or NO in CH3CN with KNO/KCO=0.46, sigificantly lower than the ratio for [FeII(hemes)] of 1100 in various media. A steric influence due to bumping of β-CH2 protons of the TIM macrocycle with a bent S=1/2 nitrosyl as opposed to much lessened steric factors for the linear Fe---CO unit is proposed to explain the lower KNO/KCO ratio for the [Fe(TIM)(CH3CN)]2+ adducts of NO or CO. Estimates for formation constants with [Fe(TIM)]2+ in CH3CN of KNO=80.1 M−1 and KCO=173 M are much lower than to hemoglobin (where KNO=2.5×1010 M−1 and KCO=2.3×107) due to a reversal of steric factors and stronger π-backdonation from [FeII(heme)] than from [FeII(TIM)(CH3CN)]2+.  相似文献   

9.
Mono- and bis(platinum) complexes containing N-alkyl-ethylenediamine units of the type {cis-PtCl2[H2NCH2CH2NH(CH2)nCH3]} (n=8, 9, 11, 15) and [{cis-PtCl2(H2NCH2CH2NH)}2(CH2)n] (n=6, 8, 10, 12) and their corresponding dihydroxo-platinum(IV) complexes were synthesized. The structures of the metal chelates were derived from elemental analyses and their 1H, 13C, IR spectra. The length of the aliphatic chains has been varied systematically, in order to increase the lipophilicity. Enlargement of the linker could also lead to more flexibility of one platinum sphere in reference to the attached DNA species. Using in vitro cytotoxicity tests it is shown that the biological activity of the bis(platinum) complexes increased, up to n=12, with the length of the linker. The longest linker in the ligands resulted in the most effective bis(platinum) complexes against L1210 murine leukemia cells.  相似文献   

10.
Syntheses and C-H bond activation reactions of the novel electrophilic PtII complexes [(tmeda)Pt(CH3)(OEt2)][BAr1], [(tmeda)Pt(CH3)(THF)][BArf], and [(tmeda)Pt(CH3)(NC5F5)][BArf] are described {[BArf] = [(3,5-C6H3(CF3)2)4B]} (tmeda is N,N,N′,N′-tetramethylethylenediamine), [(tmeda)Pt(CH3)(OEt2)][BArf] and [(tmeda)Pt(CH3)(THF)][BArf] are unstable at room temperature, yielding methane and the Fischer carbene PtII hydrides, [(tmeda)Pt(=C(CH3)(OCH2CH3))(H)][BArf] and . The methane liberated from [(tmeda)Pt(CH3)(OEt2-d10)][BArf] consists of an isotopomeric mixture, (CH4, CH3D, CH2D2 and CHD3), indicating a multiple H/D exchange reaction following the C-D activation and prior to methane loss. [(tmeda)Pt(CH3)(THF-d8)][BAr] liberates CH4 and CH3D. Methane-13C, cyclohexane, toluene, and benzene react with [(tmeda)Pt(CH3)(NC5F5)][BArf] to yield methane and new organoplatinum complexes. Deuterated alkanes and arenes react with [(tmeda)Pt(CH3)(NC5F5] [BArf] to give a mixture of methane isotopomers. The relevance of these results to the oxidation of alkanes by aqueous platinum complexes is discussed.  相似文献   

11.
A series of cationic nickel complexes [(η3-methally)Ni(PP(O))]SbF6 (1–4) [PP(O) = Ph2P(CH2)P(O)Ph2 (dppmO) (1), Ph2P(CH2)2P(O)Ph2 (dppeO) (2), Ph2P(CH2)3P(O)Ph2 (dpppO) (3), pTol2P(CH2)P(O)pTol2 (dtolpmO) (4)] has been synthesized in good yields by treatment of [(η3-methally)NiBr]2 with biphosphine monoxides and AgSbF6. The ligands are coordinated in a bidentate way. Starting from [(η3-all)PdI]2 the cationic complexes [(η3-all)PP(O))]Y (8–14). [PP(O) = dppmO, dppeO, dpppO, dtolpmO;Y = BF4, SbF6, CF3SO3, pTolSO3] were synthesized in good yields. The coordination mode of the ligand is dependent on the backbone and the anion, revealing a monodentate coordination with dppmO for stronger coordinating anions. The intermediates [(η3-all)Pd(I)(PP(O)-κ1-P)] (5–7) [PP(O) = dppmO (5), dppeO (6), dtolpmO (7)] were isolated and characterized. Neutral methyl complexes [(Cl)(Me)Pd(PP(O))] (15–18). [PP(O) = dppmO (15), dppeO (16), dpppO (17), dtolpmO (18)] can easily be obtained in high yields starting from [(cod)PdCl2]. For dppmO two different routes are presented. The structure of [(Me)(Cl)Pd{;Ph2P(CH2-P(O)Ph22-P,O};] · CH2Cl2 (15) with the chlorine atom trans to phosphorus was determined by X-ray diffraction.  相似文献   

12.
The formation of three [Tl(en)n]3+ complexes (n=1–3) in a pyridine solvent has been established by means of 205Tl and 1H NMR. Their stepwise stability constants based on concentrations, Kn=[Tl(en)n 3+]/{[Tl(en)n−1 3+]·[en]}, at 298 K in 0.5 M NaClO4 ionic medium in pyridine, were calculated from 205Tl NMR integrals: log K1=7.6±0.7; log K2=5.2±0.5 and log K3=2.64±0.05. Linear correlation between both the 205Tl NMR shifts and spin–spin coupling 205Tl–1H versus the stability constants has been found and discussed. A single crystal with the composition [Tl(en)3](ClO4)3 was synthesized and its structure determined by X-ray diffraction. The Tl3+ ion is coordinated by three ethylenediamine ligands via six N-donor atoms in a distorted octahedral fashion.  相似文献   

13.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

14.
The hydrosilation of prochiral ketones using catalysts prepared by alkylation of [1,2-bis(tetrahydroindenyl)ethane]titaniumIV(1,1′-binaphth-2,2′-diolate) with MeLi and n-BuLi, and (EtO)3SiH, Me(EtO)2SiH, [MeSi(H)O]4, Me3SiO[MeSi(H)O]nSiMe3 and MeSiH3 as the hydrosilane is described. The rates obtained with the MeLi based catalyst are one to two orders of magnitude faster than previously observed with MeLi based catalysts in the presence of MePhSiH2 and Ph2SiH2 and about the same as those observed with n-BuLi based catalysts. Me(EtO)2SiH, [MeSi(H)O]4 and Me3SiO[MeSi(H)O]nSiMe3 all undergo rapid redistribution in the presence of the catalyst to give MeSiH3, the actual hydrosilating agent in all three cases. Likewise, (EtO)3SiH redistributes to SiH4. The ee's for the hydrosilation product of acetophenone are consistently much higher (99%) for the n-BuLi based catalyst than for the MeLi based catalyst (40–50%). The hydride complex [(BTHIE)TiH]2 gives essentially the same enantioselectivity as the MeLi based catalyst. The ee's for a test set of dialkylketones are relatively insensitive to either the catalyst or the hydrosilane. Some possible mechansims that are consistent with the experimental results are discussed.  相似文献   

15.
The square-planar bis chelate complexes Ni(R-sal)2 (= bis(N-alkyl)salicylaldiminato)nickel(II)) with R = (CH2)2Ph (I; Ph = phenyl), (CH2)3Ph (II), (CH2)4Ph (III) and (CH2)2(4-hydroxyphenyl) (IV) were prepared and characterized. ComplexesII and III meet the steric requirements for intramolecular aromatic ring stacking. Stopped-flow spectrophotometry was used to study the kinetics of ligand substitution in complexesI–IV by H2salen (=N,N′-disalicylidene-ethylenediamine) in acetone. For the substitution of the two bidentate ligands in Ni(R-sal)2 only one step is kinetically observed which follows a second-order rate law, rate =k[H2salen] [Ni(R-sal)2], with k = 43.4 (I), 64.0 (II), 87.0 (III) and 49.5 (IV) M−1 s−1 at 298 K. It is found, therefore, that the size of k does not change significantly upon lengthening of the alkane chain in Ni(Ph(CH2)nsal)2 from n = 2 to 4 and that there is no kinetic evidence for intramolecular stacking interactions. The equilibrium constants and thermodynamic parameters for the formation of the bis adductsIII·(py)2 and III·(MeOH)2 in acetone are reported.  相似文献   

16.
The observation of homolytic S---CH3 bond cleavage in (Ph2P(o-C6H4)SCH3)2Ni0 under photochemical conditions has prompted further investigation of nickel(0) complexes and their stability. Tetradentate P2S′2 donor ligands (S′ = thioether type S donor) with aromatic rings incorporated into the P to S links, Ph2P(o-C6H4)S(CH2)3S(o-C6H4)PPh2 (arom-PSSP), or the S to S links, Ph2P(CH2)2SCH2(o-C6H4)CH2S(CH2)2PPh2 (PS-xy-SP), have been used to form four-coordinate, square planar nickel(II) complexes, [(arom-PSSP)Ni](BF4)2 (2) and [(PS-xy-SP)Ni](BF4)2 (3). The bidentate and tetradentate ligands, Ph2P(o-C6H4)SCH2CH3 (arom-PSEt) and Ph2P(CH2)2S(CH2)3S(CH2)2PPh2 (PSSP), give similar complexes, [(arom-PSEt)2Ni](BF4)2 (1) and [(PSSP)Ni](BF4)2 (4), respectively. Cyclic voltammograms of the Ni11 complexes in CH3CN show two reversible redox events assigned to and . The one-electron reduction product produced by stoichiometric amounts of Cp2Co can be characterized by EPR. At 100 K rhombic signals show hyperfine coupling to two phosphorus atoms. Complete bulk chemical reduction of complexes 1, 2, 3 and 4 with Na/Hg amalgam provided the corresponding nickel(0) complexes 1R, 2R, 3R and 4R which were isolated as red solutions or solids characterized by magnetic resonance properties and reaction products. Photolysis of these nickel(0) complexes leads to S-dealkylation to produce alkyl radicals and dithiolate nickel(II) complexes. Complex 3 crystallized in the monoclinic space group P2t/c with a=20.740(5), B=9.879(3), C=17.801(4) åA, ß=92.59(2)°, V=3644(2) Å3 and Z=4; complex 4: P21/c with A=13.815(4), B=13.815(4), C=15.457(5) åA, V=3365.4(14) Å3 and Z=4.  相似文献   

17.
Reaction of LaCl3·7H2O containing small amounts of La(NO3)3·7H2O as an impurity with 12-crown-4 or 18-crown-6 in 3:1 CH3CN:CH3OH resulted in the isolation of the mixed anion complexes [LaCl2(NO3)(12-crown-4)]2, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN and [LaCl2(NO3)(18-crown-6)]. The nine-coordinate dimer, [LaCl2(NO3)(12-crown-4)]2, has all of the anions in the inner coordination sphere and La3+ has a capped square antiprismatic geometry. It crystallizes in the orthorhombic space group Pbca with (at −150 °C) a = 12.938(6), B = 15.704(3), C = 13.962(2) Å, and Dcalc = 2.08 g cm−3 for Z = 4. The second complex isolated from the same reaction, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN, has the bidentate nitrate anion in the inner coordination sphere but the two chloride anions are in a hydrogen bonded outer sphere. This complex is ten-coordinate 4A,6B-expanded dodecahedral and crystallizes in the monoclinic space group P21 with (at 20 °C) A = 7.651(2), B = 11.704(7), C = 11.608(4) Å, β = 95.11(2)°, and Dcalc = 1.80 g cm−3 for Z = 2. The 18-crown-6 complex, [LaCl2(NO3)(18-crown-6)], has all inner sphere anions and has ten-coordinate 4A,6B-expanded dodecahedral La3+ centers. It crystallizes in the orthorhombic space group Pbca with (at 20 °C) a = 14.122(7), B = 13.563(5), C = 19.311(9) Å, and Dcalc = 1.89 g cm−3 for Z = 8.  相似文献   

18.
Three novel metal–organic coordination polymers, [Ag(tzdt)2NO3]n (1) (tadtH = 1,3-thiazolidine-2-thione), [Ag2(tzdt)2(tzdtH)2]n (2), and [Ag4(tzdt)4(tzdtH)2]n (3), were controllably synthesized under similar conditions by using organic alkali Et3N and KBF4 as structure-direct agent. Compound 1 shows a novel 1D ladder-like chain, which crystallizes in orthorhombic system, Pnma space group. Compound 2 is a 2D layer network, which crystallizes in monoclinic system, P21/c space group. And compound 3 possesses an interesting 3D channel architecture, which crystallizes in orthorhombic system, Fdd2 space group. Both compound 2 and compound 3 show a strong Ag–Ag interaction. The tzdtH ligand is able to form two coordination modes by controlling the dosage of organic alkali, which link with metallic cation and allow forming different dimensional structures as we conceived.  相似文献   

19.
Rhodium complexes, in the presence or absence of PEt3, catalyse the carbonylation of CH2I2 to dialkylmalonates in the presence of alcohols (ROH, R=Me, Et, Pr1, Bu) with side products from reactions in EtOH being CH2(OEt)2, EtI and traces of EtCO2Et and EtOAc. The active species when using PEt3 is shown to be [RhI(CO)(PEt3)2], formed via [Rh(OAc)(CO)(PEt3)2] from [Rh2(OAc)4 · 2MeOH] and PEt3. Mechanistic studies show that the first step of the catalytic cycle is oxidative addition of CH2I2 to give [Rh(CH2I)I2(CO)(PEt3)2], but that insertion of CO into the Rh---CH2I bond gives an iodoacyl complex which is unstable. The analogous [Rh(COCH2X)X2(CO)(PEt3)2], (X=Cl or Br) have been synthesised by oxidative addition of XCH2COX to [RhX(CO)(PEt3)2] and fully characterised (by X-ray crystallography, for X=Cl). [Rh(COCH2Br)Br2(CO)(PEt3)2] has also been formed from reaction of [Rh(COCH2Cl)Cl2(CO)(PEt3)2] with excess NaBr. However, the analogous reaction with NaI does not give the iodoethanoyl complex, but rather [RhI3(CO)(PEt3)2] and its decomposition products. It is proposed that [Rh(COCH2I)I2(CO)(PEt3)2] is unstable towards loss of I to form the ketene complex, [RhI2(CH2=C=O)(CO)(PEt3)2]I, which is transformed into [Rh(COCH2CO2Et)I2(CO)(PEt3)] by nucleophilic attack of ethanol at the central C atom, followed by CO insertion into the Rh---C bond. An analogue, [Rh(COCH2CO2Et)Cl2(CO)(PEt3)2], has been isolated by oxidative addition of EtO2CCH2COCl across [RhCl(CO)(PEt3)2], and characterised both spectroscopically and crystallographically. In refluxing ethanol, [Rh(COCH2CO2Et)Cl2(CO)(PEt3)2] produces diethylmalonate and [RhCl(CO)(PEt3)2], thus completing the catalytic cycle. Possible pathways of deactivation of the catalyst to give [RhI3(CO)(PEt3)2] are discussed. One involves the reaction of ketene with ethanol to give EtOAc, whilst the others involve protonation of the Rh---Z bond in [RhZI2(CO)(PEt3)2] (where Z =CH2I, CH2CO2Et or H) by HI. The isolation of CH2DCO2Et, when carrying out the reaction in EtOD, is consistent with all of these deactivation pathways except protonation of [RhHI2(CO)(PEt3)2].  相似文献   

20.
The reactions of the alkylsulfonated phosphines LM=Ph2P(CH2)nSO3Na/K (n=2, 3, 4) with K2PtCl4 and K2PdCl4 have been studied in homogeneous aqueous solution as a function of pH. In homogeneous acidic solution the protonated phosphines react to give cis- and trans-PtCl2(LH)2. The biphasic reaction between 1,5-cyclooctadiene platinum(II) chloride in dichloromethane and acidified aqueous LNa/K gives a higher proportion of the cis isomer. In neutral solution the initial reaction to give [PtCl(LNa/K)3]+Cl is followed by slow formation of cis-PtCl2(LNa/K)2. K2PdCl4 reacts more rapidly to give PdCl2(LNa/K)2. In homogeneous alkaline solution rapid oxidation of the phosphine occurs with only small amounts of platinum complex being observable. The biphasic reaction yields phosphine oxide in the aqueous layer and a small amount of the chelate complexes PtL2 in the organic. Representative complexes have been isolated and characterised and the mechanisms for the reactions discussed. The electrospray mass spectra of solutions of the isolated complexes have been recorded in both positive and negative ionisation modes. The positive ionisation spectra are complicated, but platinum and palladium containing ions derived from loss of chloride, H+ and HCl are observed in the negative ionisation spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号