首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were carried out on detoxification of coffee husk in solid state fermentation using three different strains of Rhizopus, Phanerochaete, and Aspergillus sp. Fungal strains were selected by their ability to grow on a coffee husk extract-agar medium. Using R. arrizus LPB-79, the best results on the degradation of caffeine (87%) and tannins (65%) were obtained with pH 6.0 and moisture 60% in 6 days. When P. chrysosporium BK was used, maximum degradation of caffeine and tannins were 70.8 and 45%, respectively, with coffee husk having 65% moisture and pH 5.5 in 14 days. The Aspergillus strain, isolated from the coffee husk, showed best biomass formation on coffee husk extract-agar medium. Optimization assays were conducted using factorial design, and surface response experiments with Aspergillus sp. The best detoxification rates achieved were 92% for caffeine and 65% for tannins. The results showed good prospects of using these fungal strains, in particular Aspergillus sp., for the detoxification of coffee husk.  相似文献   

2.
Studies were carried out to evaluate the feasibility of using coffee industry residues, viz. coffee husk, coffee leaves and spent coffee ground as substrates in solid state fermentation (SSF) to cultivate edible mushrooms Pleurotus. Eight strains of Pleurotus ostreatus and two strains of Pleurotus sajor‐caju were screened on a medium prepared from aqueous extract of coffee husk and agar. Based on best mycelial growth (9.68 mm/day) and biomass production (43.4 mg/plate in 9 days at 24°C), the strain P. ostreatus LPB 09 was selected for detailed studies. SSF was carried out using these substrates under different moisture conditions (45–75%) and spawn rates (2.5–25%). In general, although a 25% spawn rate appeared superior, the 10% spawn rate was recommended for all the three substrates in view of the process economics, as there was not any significant difference in the increase with 10 to 15%. The ideal moisture content for mycelial growth was 60–65% for coffee husk and spent coffee ground, and 60–70% for coffee leaves. The biological efficiency (BE), which is defined as the ratio of the weight of fresh fruiting bodies to the weight of dry substrate, multiplied by 100, and which indicates the fructification ability of the fungus for utilizing the substrate, was best with coffee husk. With coffee husk as the substrate, the first fructification occurred after 20 days of inoculation, and the biological efficiency reached about 97% after 60 days. When coffee leaves were used as the substrate, no fructification was observed even upon prolonged cultivation. With spent ground as the substrate, the first fructification occurred 23 days after inoculation and the biological efficiency reached about 90% in 50 days. There was a significant decrease in the caffeine and tannin contents (61 and 79%, respectively) of coffee husk after 60 days. It was remarkable to observe that caffeine was adsorbed onto the fruiting body (0.157%), indicating that it was not completely degraded by the fungal culture. However, no tannins were found in the fruiting body, indicating that the fungal strain was capable of degrading them. The results showed the feasibility of using coffee husk and spent coffee ground as substrates without any pre‐treatment for the cultivation of edible fungi in SSF, and provided one of the first steps towards an economical utilization of these otherwise unutilized or poorly utilized residues.  相似文献   

3.
In this work the growth of Gibberella fujikuroi and gibberellic acid (GA3) production were studied using coffee husk and cassava bagasse as substrates in a packed-bed column bioreactor connected to a gas chromatograph for exit gas analysis. With the respirometric data, a logarithmic correlation between accumulated CO2 and biomass production was determined, and the kinetics of the fungal growth was compared for estimated and experimental data. The solid medium consisted of coffee husk (pretreated with alkali solution), mixed with cassava bagasse (7:3 dry weight basis), with a substrate initial pH of 5.2 and moisture of 77%. Cultivation was carried out in glass columns, which were packed with preinoculated substrate and with forced aeration of 0.24 L of air/[h (g of substrate)] for the first 3 days, and 0.72 L of air/[h (g of substrate)] for the remaining period. The maximum specific growth rate (microm) obtained was 0.052 h(-1) (between 24 and 48 h of fermentation). A production of 0.925 g of GA3/kg of substrate was achieved after 6 days of fermentation.  相似文献   

4.
AIMS: To evaluate caffeine degradation and nitrogen requirements during Aspergillus tamarii growth in submerged culture. METHODS AND RESULTS: Aspergillus tamarii spores produced on a coffee infusion agar medium added with sucrose were used. Several caffeine and ammonium sulphate concentrations (0-1 and 0-1.36 g l-1, respectively) were tested simultaneously on fungal biomass production and caffeine degradation. An additional caffeine pulse (4 g l-1) was added for all experiments after 48 h of fermentation. Results revealed that when using 0.90 g l-1 of caffeine and 0.14 g l-1 of ammonium sulphate, biomass production and caffeine degradation were enhanced. Highest biomass production (Xmax = 9.87 g l-1) with a specific growth rate (micro) of 0.073 h-1 and caffeine degradation rate of 0.033 g l-1 h-1, was observed under these conditions. CONCLUSIONS: Caffeine degradation as well as biomass production were characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: These studies set the stage for future characterization studies of intracellular enzymes involved in caffeine degradation. Moreover, results observed may help in the biotreatment of residues from the coffee agroindustry.  相似文献   

5.
Biotechnological potential of coffee pulp and coffee husk for bioprocesses   总被引:1,自引:0,他引:1  
Advances in industrial biotechnology offer potential opportunities for economic utilization of agro-industrial residues such as coffee pulp and coffee husk. Coffee pulp or husk is a fibrous mucilagenous material (sub-product) obtained during the processing of coffee cherries by wet or dry process, respectively. Coffee pulp/husk contains some amount of caffeine and tannins, which makes it toxic in nature, resulting the disposal problem. However, it is rich in organic nature, which makes it an ideal substrate for microbial processes for the production of value-added products. Several solutions and alternative uses of the coffee pulp and husk have been attempted. These include as fertilizers, livestock feed, compost, etc. However, these applications utilize only a fraction of available quantity and are not technically very efficient. Attempts have been made to detoxify it for improved application as feed, and to produce several products such as enzymes, organic acids, flavour and aroma compounds, and mushrooms, etc. from coffee pulp/husk. Solid state fermentation has been mostly employed for bioconversion processes. Factorial design experiments offer useful information for the process optimization. This paper reviews the developments on processes and products developed for the value-addition of coffee pulp/husk through the biotechnological means.  相似文献   

6.
The production of β-mannanase from palm kernel cake (PKC) as a substrate in solid substrate fermentation (SSF) was studied using a laboratory column bioreactor. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and airflow rate, on β-mannanase production were evaluated by response surface methodology (RSM) on the basis of a central composite face-centered (CCF) design. Eighteen trials were conducted in which Aspergillus niger FTCC 5003 was cultivated on PKC in an aerated column bioreactor for seven days under SSF process. The highest level of β-mannanase (2117.89 U/g) was obtained when SSF process was performed at incubation temperature, initial moisture level and aeration rate of 32.5°C, 60% and 0.5 l/min, respectively. Statistical analysis revealed that the quadratic terms of incubation temperature and initial moisture content had significant effects on the production of β-mannanase (P < 0.01). A similar analysis also demonstrated that the linear effect of initial moisture level and an interaction effect between the initial moisture content and aeration rate significantly influenced the production of β-mannanase (P < 0.01). The statistical model suggested that the optimal conditions for attaining the highest level of β-mannanase were incubation temperature of 32°C, initial moisture level of 59% and aeration rate of 0.5 l/min. A β-mannanase yield of 2231.26 U/g was obtained when SSF process was carried out under the optimal conditions described above.  相似文献   

7.
Co-cultivation of mutant Penicillium oxalicum SAU(E)-3.510 and Pleurotus ostreatus MTCC 1804 was evaluated for the production of xylanase-laccase mixture under solid-state fermentation (SSF) condition. Growth compatibility between mutant P. oxalicum SAU(E)-3.510 and white rot fungi (P. ostreatus MTCC 1804, Trametes hirsuta MTCC 136 and Pycnoporus sp. MTCC 137) was analyzed by growing them on potato dextrose agar plate. Extracellular enzyme activities were determined spectrophotometrically. Under derived conditions, paired culturing of mutant P. oxalicum SAU(E)-3.510 and P. ostreatus MTCC 1804 resulted in 58% and 33% higher levels of xylanase and laccase production, respectively. A combination of sugarcane bagasse and black gram husk in a ratio of 3:1 was found to be the most ideal solid substrate and support for fungal colonization and enzyme production during co-cultivation. Maximum levels of xylanase (8205.31 ± 168.31 IU g(-1)) and laccase (375.53 ± 34.17 IU g(-1)) during SSF were obtained by using 4 g of solid support with 80% of moisture content. Furthermore, expressions of both xylanase and laccase were characterized during mixed culture by zymogram analysis. Improved levels of xylanase and laccase biosynthesis were achieved by co-culturing the mutant P. oxalicum SAU(E)-3.510 and P. ostreatus MTCC 1804. This may be because of efficient substrate utilization as compared to their respective monocultures in the presence of lignin degradation compounds because of synergistic action of xylanase and laccase. Understanding and developing the process of co-cultivation appears productive for the development of mixed enzyme preparation with tremendous potential for biobleaching.  相似文献   

8.
Solid-state fermentation systems-an overview   总被引:7,自引:0,他引:7  
Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   

9.
A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.  相似文献   

10.
Coffea arabica (Rubiaceae) is a basic drink for all Gulf societies, especially Saudi Arabia, it is the main part of the Saudi tradition. This investigation was carried out to track the chemical composition, caffeine content by UV–visible spectrophotometer, acrylamide content by using a gas chromatograph, free radical scavenging capacity by DPPH methods as well as determined the browning index and separated the volatiles compounds using GC–MS for the most common three degree of roasted Arabic coffee; light (180 ± 10 °C; 6.0 ± 1.0 min), medium (180 ± 10 °C; 8.0 ± 1.0 min), and dark (180 ± 10 °C; 10.0 ± 1.0 min). Data revealed that light roasted coffee has the highest significant (p < 0.05) value of moisture content (4.80%), crude protein (13.05%), and lowest value of ether extract (10.39%) and crude fiber (24.24%). The caffeine content was found to be 1.13% in light coffee, which increased to 1.17% in medium coffee, then decreased to 1.08% in dark coffee. The quantity of acrylamide detected in light roasted coffee (0.41 mg/100 g) was the greatest, whereas medium roasted coffee comparatively produced low amounts (0.31 mg/100 g). The light roasted coffee gave the highest antioxidant activity (88.72 mg TE/g), while the dark roasted coffee gave the least activity (78.76 mg TE/g). Browning index increases with roasting time. Hydrocarbons, alcohols, and esters were the most represented in roasted coffee headspace. Silanes and sec-butyl nitrite compounds were absent in the medium roasted headspace. Except for amines, all 11 classes of volatile compounds were present in the headspace of dark roasted coffee.  相似文献   

11.
Biological treatments were applied to fresh coffee pulp (CoP) to improve its nutritive value for monogastric animals by reducing its content of cellulose and antinutritional factors (ANFs) such as total phenols, tannins and caffeine. Treatments were: (1) ensiling with 0, 50 and 100 gkg(-1) molasses for 2 and 3 months, (2) aerobic decomposition for 0, 7, 14, 21, 28, 35 and 42 days, (3) aerobic bacterial inoculation (Bacillus sp.) for 0, 7, 14, 21 and 28 days. Ensiled CoP (E-CoP) showed higher fat and ash contents than oven-dried-CoP (OD-CoP; P<0.05). Similarly, true protein values tended to increase. The cellulose and total phenols levels of E-CoP were lower than OD-CoP (P<0.05). The E-CoP tannins levels tended to be lower than OD-CoP whereas caffeine levels remained unaffected. Improvement in the nutritional quality of E-CoP was associated with higher fat and protein contents and reduction of cellulose, total phenols and tannins. The aerobic decomposition treatment improved the nutritional quality of CoP by increasing true protein and fat contents. In addition, total phenols, tannins, caffeine and cellulose contents were reduced by an increase in treatment time (P<0.05). Bacterial treatment increased the protein content of CoP after 21 days (from 137 to 392 gkg(-1)) and decreased it after 28 days. Cellulose, total phenols, tannins and caffeine contents reduced with an increase in time of bacterial degradation. Bacterial treatment improved the CoP quality by increasing protein content and reducing cellulose and ANFs, especially after 21 days of treatment. Both the aerobic decomposition (after 21-28 days) and the aerobic bacterial degradation of CoP (after 21 days) appeared more suitable to improve the nutritional quality of CoP than the ensiling.  相似文献   

12.
Decaffeination is an important process for the removal of caffeine from wastes generated by coffee and tea industries. Microbial degradation of caffeine is more useful than conventional chemical treatment because of its low cost and because it does not involve the use of toxic solvents. However, biodegradation of caffeine remains a problem because of the difficulty of finding a strain that can resist high concentration of caffeine in addition to be able to degrade caffeine at higher rates. In this study, we used the induced cells of Pseudomonas sp. for the degradation of caffeine. The induced cells (8 mg/ml) showed complete degradation of a initial concentration of caffeine of 1.2 g/l in 6 hours. The optimum pH was 7.0, the agitation rate was 180 rpm and the optimum temperature for degradation was 35 °C. Under these conditions and in the presence of magnesium, complete degradation of 1.2 g/l of caffeine was accomplished in 4 hours. Additional trials determined that induced cells completely degraded an initial concentration of caffeine of 10 g/l in 26 hours. This is the first report on a strain that can degrade high concentrations of caffeine (e.g., 10 g/l) at the maximum rate of 0.385 g/l per hour. These results suggest that the strain can be used to successfully in developing a biological process for the degradation of caffeine.  相似文献   

13.
AIMS: The work was carried out to develop an immunoassay for estimation of Aspergillus ochraceus biomass on solid substrate. METHODS AND RESULTS: An indirect noncompetitive enzyme-linked immunosorbent assay (ELISA) was developed for determination of fungal biomass in food commodities using antibody raised against A. ochraceus mycelial antigen. The sensitivity of the assay was linear in the range of 10-160 microg fungal biomass per millilitre extract of coffee (R(2)=0.989), poultry feed (R(2)=0.987) and chilli (R(2)=0.989). The growth of A. ochraceus in the food commodities like chilli, coffee beans and poultry feed, under the influence of two levels of moisture (20% and 30%) were monitored by the ELISA. The maximum fungal colonization was observed in poultry feed (9.8 and 11.8 mg g(-1)) followed by coffee beans (6.8 and 11.3 mg g(-1)) and chilli (5.1 and 6.3 mg g(-1)) at 20% and 30% moisture after 20 days of incubation. Similarly the fungus produced maximum ochratoxin A in poultry feed (25 and 120 microg g(-1)) followed by coffee beans (8 and 24 microg g(-1)) and chilli (0.2 and 0.45 microg g(-1)) at 20% and 30% moisture after 20 days of incubation. CONCLUSIONS: The method can be used for quantitative estimation of fungal biomass and comparison of fungal colonization in food substrates varying in composition. SIGNIFICANCE AND IMPACT OF THE STUDY: The method can be adapted for studying the fungal colonization in different solid substrates under different culture condition. The method is sensitive to mould colonization of >or=0.02% (w/w) and can be used for early detection of specific fungal infestation in food commodities.  相似文献   

14.
Abstract

Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   

15.
AIMS: The objective of this research was to study the ability of the basidiomycete Ganoderma lucidum to degrade starch and upgrade nutritional value of cornmeal during solid-state fermentation (SSF). METHODS AND RESULTS: On the basal medium that consisted of cornmeal and salt solution, alpha-amylase activity of G. lucidum reached its maximum value of 267 U g(-1) of culture on day 20 after inoculation. Prolongation of fermentation time from 10 to 25 days increased significantly the degradation rate of starch and ergosterol yield (a kind of physiologically active substances of G. lucidum, also as an indicator of mycelial biomass) (P < 0.01). Supplementation of glucose, sucrose or maltose to the basal medium also caused a significant increase in either the degradation rate of starch or the ergosterol yield as compared with control (P < 0.01). Among five kinds of nitrogen sources supplemented, yeast extract, casamino acid and peptone were more effective than (NH4)2SO4 and NH4NO3, and yeast extract gave the highest degradation rate of starch and ergosterol yield, followed by peptone. Through orthogonal experiments, the theoretical optimum culture medium for SSF of this fungus was the following: 100 g cornmeal, ground to 30-mesh powder, moistened with 67 ml of nutrient salt solution supplemented with 3 g yeast extract and 7.5 g glucose per litre. CONCLUSIONS: Under the optimum culture condition, the degradation rate of starch reached its maximum values of 70.4%; the starch content of the fermented product decreased from 64.5 to 25.3%, while the reducing sugar content increased from 4.2 to 20.6%. SSF also produced a significant increase (P < 0.01) from 11.0 to 16.5% in protein content. SIGNIFICANCE AND IMPACT OF THE STUDY: After SSF by G. lucidum, the digesting and absorbing ratio of cornmeal was strikingly increased and some active substances originated from G. lucidum remained in the fermented product. This implied that cornmeal could be processed into many kinds of special functional foods by SSF of G. lucidum.  相似文献   

16.
In plants the ureides allantoin (ALN) and allantoic acid (ALA) are formed in purine metabolism, and in some legumes both compounds play an important role as nitrogen (N) sources. In coffee plants, ALN and ALA are catabolites of caffeine degradation. Caffeine is found throughout the coffee plant and in some parts this alkaloid can accumulate up to 4% dry basis. Therefore, caffeine degradation via ureides may make an important contribution to N metabolism of the plant. Using coffee cell suspension as a model we investigated the contribution of ALN as a source of N in coffee. ALN was incorporated in the liquid medium and after 20 d of cultivation, cell mass, NO(3), NH(4), amino acids, soluble proteins, ALN and caffeine were determined in the cells. The activity of glutamine synthetase was also studied. The results showed that despite being taken up by cells ALN does not contribute significantly as a source of N in coffee cells. Compared with mineral N sources, cells grown with ALN-N accumulated much less mass. The inclusion of ALN in the medium caused significant alterations in the content of some N compounds indicating a stress condition.  相似文献   

17.
This study aimed to determine the aeration rate and its kinetics in aerobic composting of agricultural wastes. For this aim compost materials were prepared by mixing grass trimmings, tomato, pepper, and eggplant wastes. Four vertical forced aeration type reactors and one vertical natural convection type reactor were manufactured to apply four different aeration rates. CO2 rate and temperature changes were recorded in three different places in the reactors. Moisture content, pH and organic material rate were recorded each day. While process-monitoring parameters (CO2, temperature, pH, moisture content) were used for interpretation of the process, organic material degradation was used for interpretation of the process success. The seven different kinetic models were applied for modeling decomposition rate to the experimental values. According to the results, four of these models were found applicable to this study. These models were analyzed with some statistical methods as root mean square error (RMSE), chi-square (chi2), and modeling efficiency (EF). According to the statistical results of these models, the best model was found as: [Formula: see text] where kT is the rate of decomposition (g VS/g VS day); T the process temperature (degrees C); Mc the daily moisture content (%wb); C the daily CO2 rate in composting reactor (%) and a, b, c, d are constants. According to the results, the highest organic matter degradation and temperature value were obtained at the aeration rate of 0.4 l air min(-1)kg(om)(-1). Thus, it could be applied to this mixed materials composting process.  相似文献   

18.
Wheat and rye straws were pretreated with ozone to increase the enzymatic hydrolysis extent of potentially fermentable sugars. Through a 2(5-1) factorial design, this work studies the influence of five operating parameters (moisture content, particle size, ozone concentration, type of biomass and air/ozone flow rate) on ozonization pretreatment of straw in a fixed bed reactor under room conditions. The acid insoluble lignin content of the biomass was reduced in all experiments involving hemicellulose degradation. Near negligible losses of cellulose were observed. Enzymatic hydrolysis yields of up to 88.6% and 57% were obtained compared to 29% and 16% in non-ozonated wheat and rye straw respectively. Moisture content and type of biomass showed the most significant effects on ozonolysis. Additionally, ozonolysis experiments in basic medium with sodium hydroxide evidenced a reduction in solubilization and/or degradation of lignin and reliable cellulose and hemicellulose degradation.  相似文献   

19.
The results of the cultivation of six strains of Pleurotus (P. djamor (2), P. ostreatus (2) and P. pulmonarius (2)) on coffee pulp and wheat straw are presented. Metabolic activity associated with biomass of each strain was determined, as well as changes in lignin and polysaccharides (cellulose and hemicellulose), phenolic and caffeine contents in substrate samples colonized for a period of up to 36 days. Analysis were made of changes during the mycelium incubation period (16 days) and throughout different stages of fructification. Greater metabolic activity was observed in the wheat straw samples, with a significant increase between 4 and 12 days of incubation. The degradation of polysaccharide compounds was associated with the fruiting stage, while the reduction in phenolic contents was detected in both substrates samples during the first eight days of incubation. A decrease was observed in caffeine content of the coffee pulp samples during fruiting stage, which could mean that some caffeine accumulates in the fruiting bodies.  相似文献   

20.
Experiments were carried out to study the production of aroma compounds from coffee husk by a fungal culture of C. fimbriata in solid state fermentation. Hot water treated coffee husk seemed to be useful substrate for aroma production in comparison to whole coffee husk or its water extract. Raw data were integrated in order to calculate the total volatiles (TV) accumulated during the fermentation using the Gompertz model. Glucose addition between 20-35% increased significantly the yields of aroma compounds. Supplementation of leucine further improved the TV production significantly (about 58%), specially the esters. When soybean oil was added, TV production was similar to the control, showing that the fungus was not able to use soybean oil for its primary metabolism, nor it acted as precursor for the synthesis of methyl ketones as reported for other fungi. Addition of saline solution drastically decreased the volatile production. Under optimized conditions, a total of 13 compounds were produced which included alcohols (2), aldehyde (1), ketones (2) and esters (8). Ethyl acetate was the prominent compound, followed by ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号