首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R C Dickson 《Gene》1980,10(4):347-356
Three recombinant DNA vectors carrying the β-galactosidase structural gene, LAC4, from the yeast Kluyveromyces lactis were constructed and transformed into Saccharomyces cerevisiae. All transformants expressed the β-galactosidase activity of LAC4. However, the level of enzyme activity varied, being highest in cells transformed with vectors which are maintained as multicopy plasmids and lowest in cells transformed with a vector which integrates into chromosomes. Enzyme levels probably reflect gene dosage. LAC4 is very stable when integrated into a chromosome, but unstable when carried on a plasmid. Therefore, stability is a property of the recombinant vector rather than of LAC4, LAC4-coded β-galactosidase synthesized in either S. cerevisiae or in K. lactis is the same as judged by two-dimensional polyacrylamide gel electrophoresis. However, S. cerevisiae transformed with  相似文献   

2.
Several Saccharomyces cerevisiae strains with a super-secreting phenotype have been transformed using a secretion plasmid containing the LAC4 gene and have proven to be effective in the secretion of Kluyveromyces lactis -galactosidase. The strain CGY1585 (ssc1-1) showed the highest secretion (1.7 EU ml–1) in the culture medium. As far as we know, Kluyveromyces lactis -galactosidase is the largest sized protein and the only intracellular one among those secreted by these mutants hitherto. The recombinant strains all grew in lactose media.  相似文献   

3.
4.
Candida shehatae gene xyl1 and Pichia stipitis gene xyl2, encoding xylose reductase (XR) and xylitol dehydrogenase (XD) respectively, were amplified by PCR. The genes xyl1 and xyl2 were placed under the control of promoter GAL in vector pYES2 to construct the recombinant expression vector pYES2-P12. Subsequently the vector pYES2-P12 was transformed into S. cerevisiae YS58 by LiAc to produce the recombinant yeast YS58-12. The alcoholic ferment indicated that the recombinant yeast YS58-12 could convert xylose to ethanol with the xylose consumption rate of 81.3%. __________ Translated from Microbiology, 2006, 33(3): 104–108 [译自:微生物学通报]  相似文献   

5.
A recombinant strain of Saccharomyces cerevisiae, secreting -galactosidase from Kluyveromyces lactis, grew efficiently with more than 60 g lactose l–1. The growth rate (0.23 h–1) in a cheese-whey medium was close to the highest reported hitherto for other recombinant S. cerevisiae strains that express intracellular -galactosidase and lactose-permease genes. The conditions for growth and -galactosidase secretion in this medium were optimized in a series of factorial experiments. Best results were obtained at 23 °C for 72 h. Since the recombinant strain produced less than 3% ethanol from the lactose, it was also assayed for the production of fructose 1,6-bisphosphate from cheese whey, and 0.06 g l–1 h–1 were obtained.  相似文献   

6.
Heterologous expression of Pleurotus ostreatus POXC and POXA1b laccases in two yeasts, Kluyveromyces lactis and Saccharomyces cerevisiae, was performed. Both transformed hosts secreted recombinant active laccases, although K. lactis was much more effective than S. cerevisiae. rPOXA1b transformants always had higher secreted activity than rPOXC transformants did. The lower tendency of K. lactis with respect to S. cerevisiae to hyperglycosylate recombinant proteins was confirmed. Recombinant laccases from K. lactis were purified and characterised. Specific activities of native and recombinant POXA1b are similar. On the other hand, rPOXC specific activity is much lower than that of the native protein, perhaps due to incomplete or incorrect folding. Both recombinant laccase signal peptides were correctly cleaved, with rPOXA1b protein having two C-terminal amino acids removed. The availability of the established recombinant expression system provides better understanding of laccase structure–function relationships and allows the development of new oxidative catalysts through molecular evolution techniques.  相似文献   

7.
Summary A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans for selection and replication in yeasts, and bla (ampicillin resistance) and ori for selection and replication in E. coli. S. cerevisiae AH22 (Leu) was transformed by pRC2312 to Leu at a frequency of 1.41 × 105 colonies per g DNA. Transformation of C. albicans SGY-243 (Ura-) to Ura+ with pRC2312 resulted in smaller transformant colonies at a frequency of 5.42 × 103 per g DNA where the plasmid replicated autonomously in transformed cells, and larger transformant colonies at a frequency of 32 per g DNA, in which plasmid integrated into the genome. Plasmid copy number in yeasts was determined by a DNA hybridization method and was estimated to be 15±3 per haploid genome in S. cerevisiae and 2–3 per genome in C. albicans replicative transformants. Multiple tandem integration occurred in integrative transformants and copy number of the integrated sequence was estimated to be 7–12 per diploid genome. The C. albicans ADE2 gene was ligated into plasmid pRC2312 and the construct transformed Ade strains of both C. albicans and S. cerevisiae to Ade+. The vector pRC2312 was also used to clone a fragment of C. albicans genomic DNA containing an aspartic proteinase gene. C. albicans transformants harboring this plasmid showed a two-fold increase in aspartic proteinase activity. However S. cerevisiae transformants showed no such increase in proteinase activity, suggesting the gene was not expressed in S. cerevisiae.  相似文献   

8.
Zhang W  Wang C  Huang C  Yu Q  Liu H  Zhang C  Pei X 《Current microbiology》2011,62(2):639-644
Recombinant Lactococcus lactis MG1363/pMG36e-lacZ exhibiting high β-galactosidase activities were constructed by us in the previous study. However, erythromycin resistance present in these recombinants restricted their practical application in food preparation. This study was conducted to delete the gene coding for erythromycin resistance present in recombinant L. lactis, as a result of which these bacteria express food-grade β-galactosidase. In this study, the recombinant plasmid pMG36e-lacZ was digested with restriction enzymes BclI and HpaI and the food-grade plasmid FGZW was rebuilt. FGZW was transformed into Escherichia coli JM109 and L. lactis MG1363. Erythromycin resistance, enzyme activity determination, gene sequencing and SDS-PAGE analysis indicated that these new recombinant bacteria lost erythromycin resistance and its relevant gene but still expressed β-galactosidase activities, although a decrease in the expression of β-galactosidase of these new strains was observed. The β-galactosidase food-grade expression system was successfully constructed and it could provide a new solution for the management of lactose intolerance. These results might promote the usage of gene-modified microorganisms and related technology in the food sector, which has the highest priority for food safety.  相似文献   

9.
The α-galactosidase gene of Streptomyces coelicolor A3(2) was cloned, expressed in Escherichia coli and characterized. It consisted of 1497 nucleotides encoding a protein of 499 amino acids with a predicted molecular weight of 57,385. The observed homology between the deduced amino acid sequences of the enzyme and α-galactosidase from Thermus thermophilus was over 40%. The α-galactosidase gene was assigned to family 36 of the glycosyl hydrolases. The enzyme purified from recombinant E. coli showed optimal activity at 40 °C and pH 7. The enzyme hydrolyzed p-nitrophenyl-α-D-galactopyroside, raffinose, stachyose but not melibiose and galactomanno-oligosaccharides, indicating that this enzyme recognizes not only the galactose moiety but also other substrates.  相似文献   

10.
Chen Z  Li Z  Yu N  Yan L 《Biotechnology letters》2011,33(4):721-725
The sweet protein monellin gene was expressed in Saccharomyces cerevisiae under the control of the GAL1 promoter and α-factor signal peptide sequence of S. cerevisiae. The gene, which was obtained through mutation of the synthesized single-chain monellin gene, was cloned into an E. coli-yeast shuttle vector pYES2.0 which carries the galactose-inducible promoter GAL1. Then the α-factor signal peptide of S. cerevisiae was linked also, resulting in the secreting expression vector pYESMTA. The recombinant plasmid was subsequently transformed into strain S. cerevisiae INVsc1. The peptide efficiently directed the secretion of monellin from the recombinant yeast cell. A maximum yield of active monellin was 0.41 g l−1 of the supernatant from INVsc1 harboring pYESMTA.  相似文献   

11.
Hen egg white (HEW) lysozyme was correctly processed and efficiently secreted from an alternative yeast, Kluyveromyces lactis. We constructed secretion vectors using PHO5, PGK, and LAC4 promoters, and found that the highest secretion was obtained under the direction of the PGK promoter in non-selective rich medium. K. lactis secreted HEW lysozyme with two-fold higher efficiency than S. cerevisiae, estimated by using a K. lactis-S. cerevisiae shuttle vector.  相似文献   

12.
Summary Three alcohol dehydrogenase (ADH) genes have recently been characterized in the yeast Kluyveromyces lactis. We report on a fourth ADH in K. lactis (KADH II: KADH2 gene) which is highly similar to other ADHs in K. lactis and Saccharomyces cerevisiae. KADH II appears to be a cytoplasmic enzyme, and after expression of KADH2 in S. cerevisiae enzyme activity comigrated with a K. lactis ADH present in cells grown in glucose or in ethanol. KADH I was also expressed in S. cerevisiae and it comigrated with a major ADH species expressed under glucose growth conditions in K. lactis. The substrate specificities for KADH I and KADH II were shown to be more similar to that of SADH II than to SADH I. SADH I cannot efficiently utilize long chain alcohols, in contrast to other cytoplasmic yeast ADHs, presumably because of the presence of a methionine (residue 271) in its substrate binding cleft. A comparison of the DNA sequences of ADHs among K. lactis, S. cerevisiae and Schizosaccharomyces pombe suggests that the ancestral yeast species contained one cytoplasmic ADH. After divergence from S. pombe, the ADH in the ancestor to K. lactis and S. cerevisiae was duplicated, and one ADH became localized to the mitochondrion, presumably for the oxidative use of ethanol. Following the speciation of S. cerevisiae and K. lactis, the gene encoding the cytoplasmic ADH in S. cerevisiae duplicated, which resulted in the development of the SADH II protein as the primary oxidative enzyme in place of SADH III. In contrast, the K. lactis mitochondrial ADH duplicated to give rise to the highly expressed KADH3 and KADH4 genes, both of which may still play primary roles in oxidative metabolism. These data suggest that K. lactis and S. cerevisiae use different compartments for their metabolism of ethanol. Our results also indicate that the complex regulatory circuits controlling the glucose-repressible SADH2 in S. cerevisiae are a recent acquisition from regulatory networks used for the control of genes other than SADH2.
  相似文献   

13.
Efficient secretion of human lysozyme from the yeast, Kluyveromyces lactis, was achieved by using more stable vectors in the order of S11 replication origin-containing episomal vector < full-length K. lactis plasmid pKD1-containing vector < centromeric vector < chromosome-integrated vectors. Cells containing a PGK (phosphoglycerate kinase) promoter-driven integration vector grown in non-selective rich medium achieved the highest level of secretion, 100 g lysozyme secretion ml 1 culture: this level was 10-fold higher than that achieved by episomal vectors. An additional copy of the protein disulfide isomerase gene further facilitated the secretion.  相似文献   

14.
木糖醇脱氢酶(xylitol dehydrogenase, XDH)可以氧化木糖醇生成木酮糖,处于木糖代谢的节点位置。利用PCR方法克隆得到了休哈塔假丝酵母(Candida shehatae) 20335的木糖醇脱氢酶基因、质粒pKT0150的ADH1终止子序列和G418抗性基因(KanR),以及酿酒酵母(Saccharomyces cerevisiae) W5特定的2.2 kb的rDNA片段。以酿酒酵母整合载体p406ADH1为骨架,利用基因工程手段构建一个多拷贝整合表达载体pLX-AGRX。将重组载体pLX-AGRX线性化转入到酿酒酵母W5后,通过高浓度G418筛选和PCR双重鉴定,证实重组载体pLX-AGRX已整合到酿酒酵母W5基因组上,测定木糖醇脱氢酶酶活可达65.957 4 U/mg。  相似文献   

15.
Fibrinogen is a large plasma glycoprotein with a molecular mass of 340 kDa that plays a critical role in the final stage of blood coagulation. Human plasma fibrinogen is a dimeric molecule comprising two sets of three different polypeptides (Aα, 66 kDa; Bβ, 55 kDa; γ, 48 kDa). To express recombinant human fibrinogen in the methylotrophic yeast Pichia pastoris, we constructed an expression vector containing three individual fibrinogen chain cDNAs under the control of the mutated AOX2 (mAOX2) promoter. First, P. pastoris GTS115 was transformed with the vector, but the expressed recombinant fibrinogen suffered severe degradation by yeast-derived proteases under conventional nutrient culture conditions. Fibrinogen degradation was prevented by using the protease A-deficient strain SMD1168 as a host strain and regulating the pH of the culture to between 5.5 and 7.0. Western blot analysis revealed that the Aα, Bβ and γ chains of recombinant fibrinogen were assembled and secreted as a complete molecule. The Bβ chain of the recombinant fibrinogen was N-glycosylated but the Aα chain, as in plasma fibrinogen, was not. The γ chains however were heterologous, one being N-glycosylated and the other not. The recombinant fibrinogen was capable of forming a thrombin-induced clot in the presence of factor XIIIa and both the glycosylated and the non-glycosylated γ chains were involved in the formation of cross-linking fibrin. The present study indicates that the recombinant fibrinogen expressed in P. pastoris, although different from plasma fibrinogen in post-translational modification, is correctly assembled and biologically active.  相似文献   

16.
The main goal of this research was to achieve a more efficient production of 1,2-propanediol (1,2-PD) using mutated Saccharomyces cerevisiae. 1,2-PD cannot be produced by wild type S. cerevisiae. To develop a S. cerevisiae mutant that could produce 1,2-PD, the mgs gene of E. coli-K12 MG1655 and the dhaD gene of Citrobacter freundii were inserted into yeast expression vectors such as pESC-URA and pESC-TRP and transformed into the wild type of S. cerevisiae. As a result, the batch fermentation of S. cerevisiae YPH500, harboring an mgs gene inserted pJES27 vector, resulted in a yield of 0.17 g/L. On the other hand, the methylglyoxal synthase of the recombinant S. cerevisiae YPH500, harboring a dhaD gene inserted pJES29 vector, was inactive and produced no detectable amount of 1,2-PD. Therefore, in order to achieve a maximum yield of 1,2-PD, we selected the pESC-TRP vector that is able to co-express the dhaD gene with the pJES27 vector. By inserting the dhaD gene into the pESC-TRP vector, the pJES30 vector was constructed. The maximal yield of 1,2-PD achieved in a 1% galactose batch fermentation by pJES27 and pJES30 harboring S. cerevisiae was 0.45 g/L.  相似文献   

17.
We report the construction of two Gateway fungal expression vectors pCBGW and pGWBF. The pCBGW was generated by introducing an expression cassette, which consists of a Gateway recombinant cassette (attR1-Cmr-ccdB-attR2) under the control of fungal promoter PgpdA and a terminator TtrpC, into the multiple cloning site of fungal vector pCB1004. The pGWBF is a binary vector, which was generated from the plant expression vector pGWB2 by replacing the CaMV35S promoter with PgpdA. The pGWBF can be transformed into fungi efficiently with Agrobacterium-mediated transformation. The applicability of two newly constructed vectors was tested by generating the destination vectors pGWBF-GFP and pCBGW-GFP and examining the expression of GFP gene in Trichoderma viride and Gibberella fujikuroi, respectively. Combining with the advantage of Gateway cloning technology, pCBGW and pGWBF will be useful in fungi for large-scale investigation of gene functions by constructing the interested gene destination/expression vectors in a high-throughput way.  相似文献   

18.
Summary The nucleotide sequences of five of the six centromeres of the yeast Kluyveromyces lactis were determined. Mutual comparison of these sequences led to the following consensus: a short highly conserved box (5-ATCACGTGA-3) flanked by an AT-rich (±90%) stretch of ± 160 by followed by another conserved box (5-TNNTTTATGTTTCCGAAAATTAATAT-3).These three elements were named K1CDEI, K1CDEII, and K1CDEIII respectively, by analogy with the situation in Saccharomyces cerevisiae. In addition, a second 100 by AT-rich (±90%) element, named K1CDE0, was found ± 150 by upstream of K1CDEI. The sequences of both K1CDEI and K1CDEIII are highly conserved between K. lactis and S. cerevisiae; however, centromeres of K. lactis do not function in S. cerevisiae and vice versa. The most obvious differences between the centromeres of the two yeast species are the length of the AT-rich CDEII, which is 161–164 by in K. lactis versus 78–86 by in S. cerevisiae and the presence in K. lactis of K1CDEO, which is not found in S. cerevisiae.  相似文献   

19.
The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for β-carotene production in recombinant Escherichia coli harboring β-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of β-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and β-carotene synthesis genes produced high amount of β-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains – MG1655, DH5α, S17-1, XL1-Blue and BL21 – the DH5α was found to be the best β-carotene producer. Using glycerol as the carbon source for β-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5α harboring the whole MVA pathway and β-carotene synthesis genes produced β-carotene of 465 mg/L at glycerol concentration of 2% (w/v).  相似文献   

20.
Various yeast strains were examined for the microbial reduction of ethyl-3-oxo-3-phenylpropanoate (OPPE) to ethyl-(S)-3-hydroxy-3-phenylpropanoate (S-HPPE), which is the chiral intermediate for the synthesis of a serotonin uptake inhibitor, Fluoxetine. Kluyveromyces lactis KCTC 7133 was found as the most efficient strain in terms of high yield (83% at 50 mM) and high optical purity ee > 99% of S-HPPE. Based on the protein purification, activity analysis and the genomic analysis, a fatty acid synthase (FAS) was identified as the responsible β-ketoreductase. To increase the productivity, a recombinant Pichia pastoris GS115 over-expressing FAS2 (α-subunit of FAS) of K. lactis KCTC7133 was constructed. In the optimized media condition, the recombinant P. pastoris functionally over-expressed the FAS2. Recombinant P. pastoris showed 2.3-fold higher reductase activity compared with wild type P. pastoris. With the recombinant P. pastoris, the 91% yield of S-HPPE was achieved at 50 mM OPPE maintaining the high optical purity of the product (ee > 99%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号