首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carcinogen 2-acetylaminofluorene is metabolically activated in cells and reacts with DNA to form N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF), N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF), and 3-(deoxyguanosin-N(2)()-yl)-2-acetylaminofluorene (dG-N(2)-AAF) DNA adducts. The dG-N(2)-AAF adduct is the least abundant of the three isomers, but it persists in the tissues of animals treated with this carcinogen. The miscoding and mutagenic properties of dG-C8-AAF and dG-C8-AF have been established; these adducts are readily excised by DNA repair enzymes engaged in nucleotide excision repair. In the present study, oligodeoxynucleotides modified site-specifically with dG-N(2)-AAF were used as DNA templates in primer extension reactions catalyzed by mammalian DNA polymerases. Reactions catalyzed by pol alpha were strongly blocked at a position one base before dG-N(2)-AAF and also opposite this lesion. In contrast, during translesion synthesis catalyzed by pol eta or pol kappa nucleotides were incorporated opposite the lesion. Both pol eta and pol kappa incorporated dCMP, the correct base, opposite dG-N(2)-AAF. In reactions catalyzed by pol eta, small amounts of dAMP misincorporation and one-base deletions were detected at the lesion site. With pol kappa, significant dTMP misincorporation was observed opposite the lesion. Steady-state kinetic analysis confirmed the results obtained from primer extension studies. Single-stranded shuttle vectors containing (5)(')TCCTCCTCXCCTCTC (X = dG-N(2)-AAF, dG-C8-AAF, or dG) were used to establish the frequency and specificity of dG-N(2)-AAF-induced mutations in simian kidney (COS-7) cells. Both lesions promote G --> T transversions overall, with dG-N(2)-AAF being less mutagenic than dG-C8-AAF (3.4% vs 12.5%). We conclude from this study that dG-N(2)-AAF, by virtue of its persistence in tissues, contributes significantly to the mutational spectra observed in AAF-induced mutagenesis and that pol eta, but not pol kappa, may play a role in this process.  相似文献   

2.
J R Pierce  R Case  M S Tang 《Biochemistry》1989,28(14):5821-5826
Recognition of damage induced by N-hydroxy-2-aminofluorene (N-OH-AF) and N-acetoxy-2-(acetylamino)fluorene (NAAAF) in both phi X174 RFI supercoiled DNA and a linear DNA fragment by purified UVRA, UVRB, and UVRC proteins was investigated. We have previously demonstrated that N-OH-AF and NAAAF treatments produce N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(deoxyguanosin-8-yl)-2-(acetylamino)fluorene (dG-C8-AAF), respectively, in DNA. Using a piperidine cleavage method and DNA sequence analysis, we have found that all guanine residues can be modified by N-OH-AF and NAAAF. These two kinds of adducts have different impacts on the DNA helix structure; while dG-C8-AF maintains the anti configuration, dG-C8-AAF is in the syn form. phi X174 RF DNA-Escherichia coli transfection results indicate that while the uvrA, uvrB, and uvrC gene products are needed to repair dG-C8-AAF, the uvrC, but not the uvrA or uvrB gene products, is needed for repair of dG-C8-AF. However, we have found that in vitro the UVRA, UVRB, and UVRC proteins must work in concert to nick both dG-C8-AF and dG-C8-AAF. In general, the reactions of UVRABC nuclease toward dG-C8-AF are similar to those toward dG-C8-AAF; it incises seven to eight nucleotides from the 5' side and three to four nucleotides from the 3' side of the DNA adduct. Evidence is presented to suggest that hydrolysis on the 3' and 5' sides of the damaged base by UVRABC nuclease is not simultaneous and that at least occasionally hydrolysis occurs only on the 3' side or on the 5' side of the damage site. The possible mechanisms of UVRABC nuclease incision for AF-DNA are discussed.  相似文献   

3.
Dzantiev L  Romano LJ 《Biochemistry》2000,39(17):5139-5145
The carcinogen N-acetyl-2-aminofluorene forms two major DNA adducts: the N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene adduct (dG-C8-AAF) and its deacetylated derivative, the N-(2'-deoxyguanosin-8-yl)-2-aminofluorene adduct (dG-C8-AF). It is well established that the AAF adduct is a very strong block for DNA synthesis in vitro while the AF adduct is more easily bypassed. In an effort to understand the molecular mechanism of this phenomenon, the structure of the complex of an exonuclease-deficient Escherichia coli DNA polymerase I (Klenow fragment) bound to primer-templates containing either an AF or AAF adduct in or near the active site was probed by nuclease and protease digestion analyses. The results of these experiments suggest that positioning the AAF adduct in the polymerase active site strongly inhibits the conformational change that is required for the insertion of a nucleotide. Similar experiments with AF-modified primer-templates shows a much less pronounced effect. The inhibition of the conformational change by either adduct is not detected if they are positioned in the single-stranded part of the template just one nucleotide before the active site. These findings may explain the different abilities of these lesions to block DNA synthesis.  相似文献   

4.
It was investigated whether in vivo aging of rat liver is associated with changes in the induction and rate of disappearance of DNA damage. For this purpose 6- and 36-month-old rats were intraperitoneally injected with a single, low dose (5 mg/kg body wt.) of the model liver carcinogen 2-acetylaminofluorene (AAF). Using the 32P-postlabeling assay we found that N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) was the major DNA-adduct formed. The minor adduct N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) could only be detected after doses of 20 mg/kg or more. Quantitation of adduct levels at various time points after treatment indicated a rapid induction of AF-adducts, which were already present at 6 h after treatment. The subsequent loss of AF-adducts was relatively slow, as was indicated by the presence of a substantial amount of AF-adducts as late as 21 days after treatment. Slight age-related differences in the pattern of induction and disappearance of AF-adducts and a somewhat higher level of persisting lesions in old than in young rats were observed.  相似文献   

5.
Nucleotide excision repair (NER) efficiencies of DNA lesions can vary by orders of magnitude, for reasons that remain unclear. An example is the pair of N-(2′-deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) adducts that differ by a single acetyl group. The NER efficiencies in human HeLa cell extracts of these lesions are significantly different when placed at G1, G2 or G3 in the duplex sequence (5′-CTCG1G2CG3CCATC-3′) containing the NarI mutational hot spot. Furthermore, the dG-C8-AAF adduct is a better substrate of NER than dG-C8-AF in all three NarI sequence contexts. The conformations of each of these adducts were investigated by Molecular dynamics (MD) simulation methods. In the base-displaced conformational family, the greater repair susceptibility of dG-C8-AAF in all sequences stems from steric hindrance effects of the acetyl group which significantly diminish the adduct-base stabilizing van der Waals stacking interactions relative to the dG-C8-AF case. Base sequence context effects for each adduct are caused by differences in helix untwisting and minor groove opening that are derived from the differences in stacking patterns. Overall, the greater NER efficiencies are correlated with greater extents of base sequence-dependent local untwisting and minor groove opening together with weaker stacking interactions.  相似文献   

6.
7.
Formation of DNA adducts in various tissues of dogs fed a single dose of the carcinogen 2-aminofluorene was investigated. Adduct analysis was performed using a technique that allows measurement of both N-(deoxyguanosin-8-yl)-2-amino-2-aminofluorene-DNA adduct formed by reaction of N-hydroxy-2-aminofluorene with DNA, as well as the polar 2-aminofluorene-DNA adducts formed when 2-aminofluorene is activated by prostaglandin H synthase-peroxidase in vitro. Two male beagle (A and B) dogs were examined and a different DNA adduct profile was observed with each dog. For the dog A, N-(deoxyguanosin-8-yl)-2-aminofluorene was the major adduct found in hepatic DNA; no peroxidase-derived adducts were detected in this tissue. In contrast, adducts eluting similarly to peroxidase-derived adducts were found in urinary tract tissues of this dog with the relative abundance of these adducts in the order urothelium greater than renal medulla greater than renal cortex, which correlates with the respective tissues' prostaglandin H synthase activity. N-(Deoxyguanosin-8-yl)-2-aminofluorene was detected in the renal tissues, but not in urothelium. For dog B, only the N-(deoxyguanosin-8-yl)-2-aminofluorene adduct was observed in all tissues examined, including the urothelium. However, total binding to liver, kidney, and bladder were two-, two-, and four-fold lower, respectively, than dog A. These data indicate that both prostaglandin H synthase-mediated activation and N-hydroxylation of 2-aminofluorene occur in vivo and may be subjected to pharmacodynamic considerations. Furthermore, the tissue distribution of the peroxidase-mediated 2-aminofluorene adducts suggests this process may also be of importance in the bladder-specific carcinogenicity of aromatic amines.  相似文献   

8.
Using the UVRABC nuclease as a reagent coupled with DNA restriction and hybridization analysis we have developed a method to quantify N-acetoxy-2-acetylaminofluorene (NAAAF)-induced DNA damage in the coding and noncoding sequences of the dihydrofolate reductase (DHFR) gene in Chinese hamster ovary (CHO) cells. High performance liquid chromatography analysis shows that the only DNA adduct formed in NAAAF-treated CHO cells is N-(deoxyguanosine-C8-yl)-2-aminofluorene (dG-C8-AF). DNA sequencing analysis demonstrates that the UVRABC nuclease incises at all potential sites in which dG-C8-AF adduct may form in linear DNA fragments. We have found that the formation and removal of dG-C8-AF adducts in the coding and 3' downstream noncoding sequences of the DHFR domain are similar in cells treated with 10 microM NAAAF (3.1 adducts/14 kilobases); DNA adduct removal attains 70% for both sequences within 24 h. This result contrasts with that obtained for the repair of cyclobutane dipyrimidines in the DHFR gene, in which the repair efficiency is much higher in the coding region than in the 3' downstream noncoding region. Our results suggest that in CHO cells the repair pathway for aminofluorene DNA adducts is not the same as that for cyclobutane dipyrimidines. This new technique has the potential to detect a variety of chemical carcinogen induced DNA adducts at the gene level in cultured cells and in DNA isolated from animal tissues.  相似文献   

9.
10.
The sensitivity of various methods suitable for biomonitoring the exposure to genotoxicants was compared in an animal model. The results were related to the presence of genotoxic effects in the target organ. Groups of male Wistar rats were given one oral dose of 0, 0.1, 10 or 200 mg 2-acetylaminofluorene (2-AAF)/5 ml dimethyl sulphoxide/kg body weight. Peripheral blood cells, excreta, liver and spleen were collected at different time intervals after dosing. Mutagenicity in urine and extracts of faeces was determined using the Ames test with Salmonella typhimurium TA98 with and without S9 and with and without beta-glucuronidase. Genotoxic effects were studied by measuring DNA-adduct formation in lymphocytes, liver and spleen, and sister-chromatid exchanges (SCEs) in lymphocytes. DNA adducts were measured with immunochemical techniques and postlabelling methods. Mutagenicity in urine and faeces, collected during the first 24 h after treatment, was detected at 2-AAF doses of 1 mg/kg b.w. and higher. At these doses DNA adducts also became apparent in the liver, the main target organ for tumour induction by 2-AAF. The adduct detected appeared to be the N-(deoxyguanosin-8-yl)-2-AAF adduct. There was no evidence of the presence of any other types of DNA adducts. At doses of 1 and 10 mg/kg b.w. no mutagenicity was detected in excreta collected during the second and third day after dosing. The DNA-adduct level in liver cells of the 1 mg/kg b.w. group was maximal 24 h after dosing. At 200 mg/kg b.w. a delay in excretion of mutagenicity with urine and faeces was seen and at 10 and 200 mg/kg b.w. the amount of DNA adducts continued to increase with time after dosing. At 24 and 48 h after treatment with 10 mg, the adduct levels were of the same order of magnitude as those found after the 20-fold higher dose. This points to overloading of the metabolizing system which in combination with the enterohepatic circulation, may lead to an increased retention of 2-AAF in the body. A slightly increased incidence of SCEs of doubtful significance was seen in lymphocytes, but only at the very high dose of 200 mg/kg b.w. No DNA adducts could be detected in blood lymphocytes or spleen cells at any of the dose levels applied, either with the immunochemical or with the postlabelling method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The level of adducts in DNA of rats treated with 2-aminofluorene (2-AF) and 2-acetylaminofluorene (2-AAF) was compared at the times from 1 h till 28 days after injection. The highest amount of DNA adducts was observed 12 h after treatment with 2-AF and 24 h after treatment with 2-AAF, and reached values of about 18 and 21 fmol per micrograms DNA, respectively. Participation of the nonacetylated form, dG-C8-AF, in the total amount of DNA adducts was only slightly greater in rats treated with 2-AF then in those treated with 2-AAF.  相似文献   

12.
J Ross  R Doisy  M S Tang 《Mutation research》1988,201(1):203-212
Double-stranded replicative form (RFI) DNA of bacteriophage M13 strain M13mp10 which carries partial lacZ gene has been modified in vitro to various extents with N-hydroxy-2-amino-fluorene (N-OH-AF) and then transfected into E. coli cells. High-performance liquid chromatography (HPLC) analysis results demonstrate that the sole adduct (95%) formed in modified DNA is N-(deoxyguanosine-8-yl)-2-aminofluorene (dG-C8-AF). Approximately 20 adducts per RFI molecule constitute 1 lethal event when plaque-forming ability is assayed on E. coli cells which have received no prior SOS induction. The mutagenicity of dG-C8-AF adducts was assayed by measuring loss of beta-galactosidase activity as a function of adducts per molecule. A dose-dependent increase in Lac- mutants was observed, with a 4-fold increase in mutants per survivor at 30 adducts/molecule. The mutations produced, characterized by DNA sequencing, occur predominantly at either G or C positions different from those observed in the spontaneous mutant spectrum. Restriction-mapping results show that in our assay system, dG-C8-AF adducts induce a previously unreported recombinogenic activity.  相似文献   

13.
When the chemical carcinogen N-2-acetylaminofluorene binds to DNA in vivo, two major adducts are formed, both at position C-8 of the guanine residue. One of these (the acetylaminofluorene adduct) retains the acetyl group, while the other (the aminofluorene adduct) is the corresponding deacetylated form. Unlike -AAF adducts, which trigger important structural changes of the DNA secondary structure (either the insertion-denaturation model or the induction of a Z-DNA structure, depending upon the local nucleotide sequence), -AF adducts bind to the C-8 of guanine residues without causing any major conformational change of the B-DNA structure. Well-defined adducts (either -AF or -AAF) can be formed in vitro by reacting DNA with either N-hydroxy-N-2-aminofluorene or N-acetoxy-N-2-acetylaminofluorene. Specific cleavage of the phosphodiester backbone at -AF adducts can be achieved by treating -AF-modified DNA in 1 M-piperidine at 90 degrees C. This observation led us to construct the spectrum for -AF binding to a defined DNA restriction fragment. It is found that only guanine residues react to form alkali-labile lesions and that the reactivity among the different guanines is similar. In a forward mutation assay, namely the inactivation of the tetracycline resistance gene, we found previously that more than 90% of mutations induced by -AAF adducts are frameshift mutations. Using the same assay, we show here that -AF adducts induce primarily base substitution mutations (85%), mainly of the G to T transversion type. There is therefore a strong correlation between the nature of the carcinogen-induced conformational change of the DNA structure and the corresponding mutation specificity. The -AF-induced base substitution mutations depend upon the umuC gene function(s). The data obtained in our forward mutation assay are compared to the data previously obtained in the histidine reversion assay (Ames test).  相似文献   

14.
15.
Site-specifically modified oligodeoxynucleotides were used to investigate the mutagenic properties of a major cooked food mutagen-derived DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (dG-C8-PhIP). dG-C8-PhIP-modified oligodeoxynucleotides were prepared by reacting an oligodeoxynucleotide containing a single dG (5'-TCCTCCTXGCCTCTC, where X = C, A, G, or T) with N-acetoxy-PhIP. The unmodified and dG-C8-PhIP-modified oligomers were inserted into single-stranded phagemid vectors. These single-stranded vectors were transfected into simian kidney (COS-7) cells. The progeny plasmid obtained was used to transform Escherichia coli DH10B. When dC was at the 5'-flanking position to dG-C8-PhIP, preferential incorporation of dCMP, the correct base, was observed opposite the dG-C8-PhIP. Targeted G --> T transversions were detected, along with lesser amounts of G --> A transitions and G --> C transversions. No mutations were detected for the unmodified vector. The influence of sequence context on the dG-C8-PhIP mutation frequency and spectrum was also explored. When the dC 5'-flanking base was replaced by dT, dA, or dG, the mutational spectra were similar to that observed with dC-flanking base. Higher mutational frequencies (28-30%) were observed when dC or dG was 5' to dG-C8-PhIP. A lower mutational frequency (13%) was observed when dA was at the 5' to the lesion. Single-base deletions were detected only when dG or dT flanked the adduct. We conclude that dG-C8-PhIP is mutagenic, generating primarily G --> T transversions in mammalian cells. The mutational frequency and specificity of dG-C8-PhIP vary depending on the neighboring sequence context.  相似文献   

16.
The DNA adducts were analyzed by 32P-postlabeling method following exposure of human uroepithelial cells (HUC) to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP). TLC of the postlabeled products on the first dimension revealed several products, the majority of which stayed close to the origin and were earlier identified as the 3',5' -bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (Carcinogenesis 13 (1993) 955; Carcinogenesis 16 (1995) 295). Here we report characterization of two additional adducts that amounted to less than 5% of the total adducts. Autoradiography of D1 chromatogram of the postlabeled products of calf thymus DNA chemically interacted with N-OH-ABP under acidic conditions revealed two adducts, #1 and #2, with R(f) values of about 0.2 and 0.3, respectively. Two adducts with D1 thin layer chromatographic properties similar to those of adducts #1 and #2 were obtained on postlabeling analyses of products generated by chemical interaction of N-acetoxy-4-aminobiphenyl (N-OAc-ABP) with deoxyguanosine-3' -monophosphate (dGp). Based on proton NMR and mass spectroscopic analyses of the synthetic products derived from N-OAc-ABP, the chemical structures of adducts #1 and #2 have been identified as 3-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, and N-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, respectively. Both of these adducts were insensitive to digestion with nuclease P1. 32P-Postlabeling analysis of the nuclease P1 enriched DNA hydrolysate of HUC cells treated with N-OH-ABP showed the presence of adduct #2 but not adduct #1. Adduct #2 was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl CoA. These results suggest that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP is bioactivated by acetyl CoA-dependent acyltransferases to reactive arylnitrenium ions that covalently interact at N(2)-position of deoxyguanosine in DNA.  相似文献   

17.
In this paper, we have constructed double stranded helices (60-mers) containing a single N-2-acetylaminofluorene (-AAF) adduct covalently bound to one of the three guanine residues of the Narl site (G1G2CG3CC). This sequence was identified as a strong frameshift mutation hot spot for many carcinogens that bind to the C8 position of guanine. Using DNase I as a probe for DNA conformation we show i) that the average size of the helix deformation extends over 3 to 5 base pairs in both directions from the adduct site, and ii) that there is a strong polymorphism in the adduct induced DNA conformation. The present study supports the idea that adducts induce specific sequence dependent local conformational changes in DNA that are differentially recognized and processed by the enzymatic machineries that lead to repair or mutagenesis.  相似文献   

18.
An improved HPLC-based 32P-postlabeling assay has been developed for the analysis of DNA modified with the food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Postlabeled samples are loaded onto a C18 precolumn and adducted bases are retained while excess radioactivity and unmodified DNA bases are eluted directly to waste through a switching valve. The use of this HPLC in-line precolumn purification (HIPP) technique allows entire postlabeled samples to be analyzed without prior removal of inorganic phosphate and unmodified DNA bases. The method has a sample to sample precision of 15% and accuracy of 20%, at adduct levels of 2 adducts/107 bases and shows a linear relationship between signal and adduction levels from 1 adduct per 104 to ≈ 2±1 adducts per 109 bases. Individual postlabeled DNA samples can be analyzed by HPLC in less than 1 h, allowing high throughput. The use of calf-thymus DNA (CT-DNA), highly modified with PhIP, or DNA isolated from mice chronically fed a PhIP-modified diet shows two major PhIP-DNA adduct peaks and three additional minor adduct peaks when labeled under ATP-limiting conditions. Isolation of the HPLC purified peaks and analysis by thin layer chromatography (TLC) matches the five HPLC peaks to the spots typically seen by TLC, including N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Variations in digestion techniques indicate a potential resistance of the PhIP-DNA adducts to the standard enzymatic digestion methods. Attempts at adduct intensification by solid phase extraction, nuclease P1 enrichment or 1-butanol extraction decreased PhIP-DNA adduct peaks and introduced a large early eluting peak. Removal of the 3′-phosphate with nuclease P1 following the kinase labeling reaction simplifies the HPLC profile to one major peak (dG-C8-PhIP monophosphate) with several minor peaks. In addition to the high resolution provided by HPLC separation of the PhIP-DNA adducts, this method can be adjusted for analysis of other DNA adducts and is readily automated for high throughput.  相似文献   

19.
The effect of the tumor suppressor gene TP53 on repair of genomic DNA damage was examined in human urinary bladder transitional cell carcinoma (TCC) cell lines. Utilizing TCC10 containing wild-type p53 (wt-p53) as the parental line, an isogenic set of cell lines was derived by retroviral infection that expressed a transdominant mutant p53 (Arg --> His at codon 273, TDM273-TCC10), or the human papilloma virus 16-E6 oncoprotein (E6-TCC10). 32P-postlabeling analyses were performed on DNA from TCC cultures obtained after treatment with N-hydroxy-4-aminobiphenyl (N-OH-ABP), N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) and N-acetoxy-4-acetylaminobiphenyl (N-OAc-AABP). The major adduct was identified as N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) with all three chemicals. The amount of adducts in urothelial DNA ranged between 0.1 and 20 per 10(6) nucleotides, N-OAc-AABP yielding the highest levels, followed by N-OH-ABP and N-OH-AABP. To determine, if the functional status of p53 affects the rate of repair of dG-C8-ABP in genomic DNA, TCC10 and the TDM273-TCC10 and E6-TCC10 isotypes were exposed to N-OH-AABP for 12h and the DNA damage was allowed to repair up to 24h. The adduct levels were quantified and compared between the TCC10 isotypes. The amounts of dG-C8-ABP that remained in genomic DNA from E6-TCC10 and TDM273-TCC10 were approximately two-fold higher, as compared to the parental TCC10. At the dose used for DNA repair studies, N-OH-AABP or N-OAc-AABP did not induce apoptosis in TCC10. However, N-OAc-AABP at high doses (>5 microM) induced apoptosis, as evidenced by DNA fragmentation analyses. Furthermore, N-OAc-AABP-mediated apoptosis was independent of the functional status of wt-p53, since both E6-TCC10 and the parental TCC10 exhibited DNA fragmentation following treatment. These results suggest that p53 might modulate the repair of DNA adducts generated from the human bladder carcinogen ABP in its target human uroepithelial cells. This implies that in p53 null cells the unrepaired DNA damage could cause accumulation of mutation, which might contribute to increased genomic instability and neoplastic progression.  相似文献   

20.
The 3′ → 5′ exonuclease activity of bacteriophage T4 DNA polymerase is found to be blocked in the vicinity of the N-2-acetylaminofluorene (-AAF) adducts to DNA. This observation allowed us to determine the binding spectrum of the -AAF adducts along a given DNA sequence. The mutation spectrum in a forward mutation assay within this same sequence has been established. Comparison between the -AAF binding spectrum and the mutation spectrum shows that there is no direct correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号