首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have inserted a tryptophan (F77W) in the core of the regulatory domain of cardiac troponin C (cNTnC), and previously determined the structure of this mutant with and without the cosolvent trifluoroethanol (TFE). Interestingly, the orientations of the indole side chain of the Trp are in opposite directions in the two structures (Julien et al., Protein Sci 2009; 18:1165-1174). Fluorescence decay experiments for single Trp-containing proteins often show several lifetimes, which have been interpreted as reflecting conformational heterogeneity of the Trp side chain resulting from different rotamers. To test this interpretation, we monitored the effect of TFE on wild type, F77W and F77W-V82A calcium-saturated cNTnC using 2D (13)C-HSQC NMR and time-correlated single photon counting fluorescence spectroscopies. The time dependence of the Trp fluorescence decay was fit with three lifetimes. Addition of TFE caused a gradual, but limited decrease of the lifetimes due to dynamic quenching. For F77W cNTnC, the amplitude fractions of the lifetimes also changed upon addition of TFE-the long lifetime increased from 13 to 29%, while the middle lifetime decreased from 63 to 50% and the short lifetime remained relatively unchanged. For F77W-V82A cNTnC, comparable NMR changes are observed, confirming the switch in rotamer conformation, but only much smaller changes in fluorescence decay parameters were detected. These data indicate that the balance between the rotamer states can be changed without changing the lifetime amplitude fractions appreciably, and suggest that the environment(s) of the indole ring, responsible for the different lifetimes, can result from factors other than the intrinsic rotamer state of the tryptophan.  相似文献   

2.
Monoclonal antibody (mAb) 82D6A3 is an anti-von Willebrand factor (VWF) mAb directed against the A3-domain of VWF that inhibits the VWF binding to fibrillar collagens type I and III in vitro and in vivo. To identify the discontinuous epitope of this mAb, we used phage display, mutant analysis, and peptide modeling. All 82D6A3-binding phages displayed peptides containing the consensus sequence SPWR that could be aligned with P981W982 in the VWF A3-domain. Next, the binding of mAb 82D6A3 to 27 Ala mutants with mutations in the A3-domain of VWF revealed that amino acids Arg963, Pro981, Asp1009, Arg1016, Ser1020, Met1022, and His1023 are part of the epitope of mAb 82D6A3. Inspection of residues Ser1020, Arg1016, Pro981, and Trp982 in the three-dimensional structure of the A3-domain demonstrated that these residues are close together in space, pointing out that the structure of the SPWR consensus sequence might mimic this discontinuous epitope. Modeling of a cyclic 6-mer peptide containing the consensus sequence and superposition of its three-dimensional structure onto the VWF A3-domain demonstrated that the Ser and Arg in the peptide matched the Ser1020 and Arg1016 in the A3-domain. The Pro residue of the peptide served as a spacer, and the side chain of the Trp pointed in the direction of Trp982. In conclusion, to our knowledge, this is the first report where a modeled peptide containing a consensus sequence could be fitted onto the three-dimensional structure of the antigen, indicating that it might adopt the conformation of the discontinuous epitope.  相似文献   

3.
The antithrombotic monoclonal antibody 82D6A3 is directed against amino acids Arg-963, Pro-981, Asp-1009, Arg-1016, Ser-1020, Met-1022, and His-1023 of the von Willebrand factor A3-domain (Vanhoorelbeke, K., Depraetere, H., Romijn, R. A., Huizinga, E., De Maeyer, M., and Deckmyn, H. (2003) J. Biol. Chem. 278, 37815-37821). By this, it potently inhibits the interaction of von Willebrand factor to collagens, which is a prerequisite for blood platelet adhesion to the injured vessel wall at sites of high shear. To fully understand the mode of action of 82D6A3 at the molecular level, we resolved its crystal structure in complex with the A3-domain and fine mapped its paratope by construction and characterization of 13 mutants. The paratope predominantly consists of two short sequences in the heavy chain CDR1 (Asn-31 and Tyr-32) and CDR3 (Asp-99, Pro-101, Tyr-102 and Tyr-103), forming one patch on the surface of the antibody. Trp-50 of the heavy and His-49 of the light chain, both situated adjacent to the patch, play ancillary roles in antigen binding. The crystal structure furthermore confirms the epitope location, which largely overlaps with the collagen binding site deduced from mutagenesis of the A3-domain (Romijn, R. A., Westein, E., Bouma, B., Schiphorst, M. E., Sixma, J. J., Lenting, P. J., and Huizinga, E. G. (2003) J. Biol. Chem. 278, 15035-15039). We herewith further consolidate the location of the collagen binding site and reveal that the potent action of the antibody is due to direct competition for the same interaction site. This information allows the design of a paratope-mimicking peptide with antithrombotic properties.  相似文献   

4.
vWF介导血小板粘附到细胞外基质 ,在血栓形成过程中发挥重要作用 ,可通过阻断vWF与细胞外基质的结合阻止血小板的粘附 .应用RT PCR方法从人脐静脉内皮细胞中克隆vWF分子A1、A3区基因并在大肠杆菌中表达 ,表达的重组蛋白量占菌体总蛋白 12 6 % ,包涵体经过变性剂溶解、纯化和复性 ,获得重组蛋白 (rvWF A1 A3) .应用流式细胞术检测rvWF A1 A3与血小板膜糖蛋白 (GPⅠb)的结合功能 ;血小板聚集实验观察rvWF A1 A3对瑞斯托霉素 (ristocetin)诱导的血小板聚集 (RIPA)的影响 ;ELISA胶原结合实验及竞争抑制实验分析rvWF A1 A3与胶原的结合活性 .结果显示 :rvWF A1 A3嵌合体与血小板的结合阳性率为 70 4 % .rvWF A1 A3嵌合体不能引起血小板的聚集 ,但rvWF A1 A3嵌合体与血小板温育后可以阻断ristocetin诱导人血浆vWF对血小板的聚集作用 ,而且呈剂量依赖性 ,IC50 的rvWF A1 A3浓度为 0 76 μmol L ,当浓度为 1 17μmol L时抑制率最高达 76 8% .rvWF A1 A3具有良好的胶原结合活性 ,同时它可以竞争性抑制vWF与Ⅲ型胶原的结合 ,抑制率为 76 % .表明rvWF A1 A3可作为阻断剂用于干预vWF介导的血小板粘附过程 ,同时又可以阻断血浆vWF与血小板GPIb结合抑制血小板聚集 ,具有良好的抗栓应用前景 .  相似文献   

5.
Platelet participation in hemostasis and arterial thrombosis requires the binding of glycoprotein (GP) Ibalpha to von Willebrand factor (vWF). Hemodynamic forces enhance this interaction, an effect mimicked by the substitution I546V in the vWF A1 domain. A water molecule becomes internalized near the deleted Ile methyl group. The change in hydrophobicity of the local environment causes positional changes propagated over a distance of 27 A. As a consequence, a major reorientation of a peptide plane occurs in a surface loop involved in GP Ibalpha binding. This distinct vWF conformation shows increased platelet adhesion and provides a structural model for the initial regulation of thrombus formation.  相似文献   

6.
Heterogeneous fluorescence intensity decays of tryptophan in proteins are often rationalized using a model which proposes that different rotameric states of the indole alanyl side-chain are responsible for the observed fluorescence lifetime heterogeneity. We present here the study of a mutant of carp parvalbumin bearing a single tryptophan residue at position 102 (F102W) whose fluorescence intensity decay is heterogeneous and assess the applicability of a rotamer model to describe the fluorescence decay data. We have determined the solution structure of F102W in the calcium ligated state using multi-dimensional nuclear magnetic resonance (NMR) and have used the minimum perturbation mapping technique to explore the possible existence of multiple conformations of the indole moiety of Trp102 of F102W and, for comparison, Trp48 of holo-azurin. The maps for parvalbumin suggest two potential conformations of the indole side-chain. The high energy barrier for rotational isomerization between these conformers implies that interwell rotation would occur on time-scales of milliseconds or greater and suggests a rotamer basis for the heterogeneous fluorescence. However, the absence of alternate Trp102 conformers in the NMR data (to within 3 % of the dominant species) suggests that the heterogeneous fluorescence of Trp102 may arise from mechanisms independent of rotameric states of the Trp side-chain. The map for holo-azurin has only one conformation, and suggests a rotamer model may not be required to explain its heterogeneous fluorescence intensity decay. The backbone and Trp102 side-chain dynamics at 30 degrees C of F102W has been characterized based on an analysis of (15)N NMR relaxation data which we have interpreted using the Lipari-Szabo formalism. High order parameter (S(2)) values were obtained for both the helical and loop regions. Additionally, the S(2) values imply that the calcium binding CD and EF loops are not strictly equivalent. The S(2) value for the indole side-chain of Trp102 obtained from the fluorescence, NMR relaxation and minimum perturbation data are consistent with a Trp moiety whose motion is restricted.  相似文献   

7.
通过定点诱变结合荧光光谱学方法研究了慈菇蛋白酶抑制剂A和B(APIA和APIB)Trp残基周围构象与酶抑制专一性之间的关系。研究表明APIB中的两个Trp残基 (93和 12 2位 )所处环境的疏水性要比APIA中的强。Trp定点诱变研究表明 ,在APIB中 ,Trp12 2 周围环境的疏水性要比Trp93 强。用Ser和Leu分别替代 82位Leu和 87位Arg ,使APIB中色氨酸荧光特性变得与APIA的基本相同 ,同时还发现其酶的抑制专一性也变得趋近APIA的 ,暗示Trp周围的构象与酶抑制剂的抑制专一性有关。  相似文献   

8.
The hinge residues (Val29 and Ile36) of the switch I region (also known as the effector loop) of the Ha-ras-p21 protein have been mutated to glycines to accelerate the conformational changes typical for the effector loop. In this work, we have studied the influence of the combined mutations on the steady-state structure of the switch I region of the protein in both the inactive GDP-bound conformation as in the active GTP-bound conformation. Here, we use the fluorescence properties of the single tryptophan residue in the Y32W mutant of Ha-ras-p21. This mutant has already been used extensively as a reference form of the protein. Reducing the size of the side chains of the hinge residues not only accelerates the conformational changes but also affects the steady-state structures of the effector loop as indicated by the changes in the fluorescence properties. A thorough analysis of the fluorescence changes (quantum yield, lifetimes, etc.) proves that these changes are from a reshuffling between the rotamer populations of Trp. The population reshuffling is caused by the overall structural rearrangement along the switch I region. The effects are clearly more pronounced in the inactive GDP-bound conformation than in the active GTP-bound conformation. The effect of both mutations seems to be additive in the GDP-bound state, but cooperative in the GTP-bound state.  相似文献   

9.
10.
Type XIV collagen, a fibril-associated collagen with interrupted triple helices (FACIT), interacts with the surrounding extracellular matrix and/or with cells via its binding to glycosaminoglycans (GAGs). To further characterize such interactions in the NC1 domain of chicken collagen XIV, we identified amino acids essential for heparin binding by affinity chromatography analysis after proteolytic digestion of the synthetic peptide NC1(84-116). The 3D structure of this peptide was then obtained using circular dichroism and NMR. The NC1(84-116) peptide appeared poorly structured in water, but the stabilization of its conformation by the interaction with hydrophobic surfaces or by using cosolvents (TFE, SDS) revealed a high propensity to adopt an alpha-helical folding. A 3D structure model of NC1(84-116), calculated from NMR data recorded in a TFE/water mixture, showed that the NC1-heparin binding site forms a amphipathic alpha-helix exhibiting a twisted basic groove. It is structurally similar to the consensus spatial alpha-helix model of heparin-binding [Margalit et al. (1993) J. Biol. Chem. 268, 19228-19231], except that the GAG binding domain of NC1 may be extended over 18 residues, that is, the NC1(94-111) segment. In addition, the formation of a hydrophobic groove upon helix formation suggests the contribution of additional sequences to ensure the stability of the GAG-binding domain. Overall the NC1(84-116) model exhibits a nativelike conformation which presents suitably oriented residues for the interaction with a specific GAG.  相似文献   

11.
Platelet attachment to von Willebrand factor (vWF) requires the interaction between the platelet GP1bα and exposed vWF-A1 domains. Structural insights into the mechanism of the A1-GP1bα interaction have been limited to an N-terminally truncated A1 domain that lacks residues Q1238E1260 that make up the linker between the D3 and A1 domains of vWF. We have demonstrated that removal of these residues destabilizes quaternary interactions in the A1A2A3 tridomain and contributes to platelet activation under high shear (Auton et al., J Biol Chem 2012;287:14579–14585). In this study, we demonstrate that removal of these residues from the single A1 domain enhances platelet pause times on immobilized A1 under rheological shear. A rigorous comparison between the truncated A1-1261 and full length A1-1238 domains demonstrates a kinetic stabilization of the A1 domain induced by these N-terminal residues as evident in the enthalpy of the unfolding transition. This stabilization occurs through site and sequence-specific binding of the N-terminal peptide to A1. Binding of free N-terminal peptide to A1-1261 has an affinity and this binding although free to dissociate is sufficient to suppress the platelet pause times to levels comparable to A1-1238 under shear stress. Our results support a dual-structure/function role for this linker region involving a conformational equilibria that maintains quaternary A domain associations in the inactive state of vWF at low shear and an intra-A1-domain conformation that regulates the strength of platelet GP1bα-vWF A1 domain associations in the active state of vWF at high shear.  相似文献   

12.
A previous study showed that the minimal epitope recognised by the PLY-5 mAb in the conserved undecapeptide Trp-rich loop of bacterial CDCs should consist of WEWWRT (Jacobs et al., 1999) [5]. Now, through immunoscreening of amino acid substitution analogues, it is concluded that the second Trp and the Arg residues are essential in the PLY-5 epitope. The E residue is an auxiliary epitope contributor. Antibody modelling and docking simulations provided support for these findings. For recognition by the antibody, the Trp-rich loop flipped out, mimicking the mechanism of membrane insertion. The displaced second Trp was seen to establish aromatic stacking interactions with aromatic residues of the antibody paratope and the notably extruded guanidium tip of the arginine residue mediated electrostatic interactions with well-exposed carboxylic groups of glutamic residues on the surface of the paratope. Thus, the epitope/paratope interaction is mainly mediated by aromatic and by ionic interactions.  相似文献   

13.
The interaction of the cationic Gemini surfactant hexamethylene‐1,3‐bis (tetradecyldimethylammonium bromide) (14‐6‐14) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra and three‐dimensional (3D) fluorescence spectra. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that hydrophobic forces were the predominant intermolecular forces between BSA and the surfactant. Competitive experiments and the number of binding sites calculation show that 14‐6‐14 can be inserted in site‐II (in subdomain IIIA) of BSA. The effect of 14‐6‐14 on the conformation of BSA was evaluated by synchronous fluorescence spectroscopy and 3D fluorescence spectral methods. The results show that the conformation of BSA was changed dramatically in the presence of 14‐6‐14, by binding to the Trp and Try residues of BSA. The investigation provides interaction between BSA and 14‐6‐14 as a model for molecular design and industrial research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The conformation and dynamics of a protein are essential in characterizing the protein folding/unfolding intermediate state. They are closely involved in the packing and site-specific interactions of peptide elements to build and stabilize the tertiary structure of the protein. In this study, it was confirmed that trypsin inhibitor obtained from seeds of bitter gourd (BGTI) adopted a peculiar but plausible conformation and dynamics in the unfolding intermediate state. The fluorescence spectrum of one of two tryptophan residues of BGTI, Trp9, shifted to the blue side in the presence of 2–3 M guanidine hydrochloride, although the other, Trp54, did not show this spectral shift. At the same time, the motional freedom of Trp9 revealed by a time-resolved fluorescence study decreased, suggesting that the segmental motion of this residue was more restricted. These results indicate that BGTI takes such a conformation state that the hydrophobic core and loop domains arranging Trp9 and Trp54 respectively are heterogeneously packed in the unfolding intermediate state.  相似文献   

15.
Membrane protein insertion in the lipid bilayer is determining for their activity and is governed by various factors such as specific sequence motifs or key amino-acids. A detailed fluorescence study of such factors is exemplified with PMP1, a small (38 residues) single-membrane span protein that regulates the plasma membrane H+-ATPase in yeast and specifically interacts with phosphatidylserines. Such interactions may stabilize raft domains that have been shown to contain H+-ATPase. Previous NMR studies of various fragments have focused on the critical role of interfacial residues in the PMP1 structure and intermolecular interactions. The C-terminal domain contains a terminal Phe (F38), a single Trp (W28) and a single Tyr (Y25) that may act together to anchor the protein in the membrane. In order to describe the location and dynamics of W28 and the influence of Y25 on protein insertion within membrane, we carried out a detailed steady-state and time-resolved fluorescence study of the synthetic G13-F38 fragment and its Tyr-less mutant, Y25L in various membrane mimetic systems. Detergent micelles are conveniently used for this purpose. We used dodecylphosphocholine (DPC) in order to compare with and complement previous NMR results. In addition, dodecylmaltoside (DM) was used so that we could apply our recently described new quenching method by two brominated analogs of DM (de Foresta et al. 2002, Eur. Biophys. J. 31:185–97). In both systems, and in the presence and absence of Y25, W28 was shown to be located below but close to the polar headgroup region, as shown by its maximum emission wavelengths (λmax), curves for the quenching of Trp by the brominated analogs of DM and bimolecular constants for quenching (kq) by acrylamide. Results were interpreted by comparison with calibration data obtained with fluorescent model peptides. Time-resolved anisotropy measurements were consistent with PMP1 fragment immobilization within peptide-detergent complexes. We tentatively assigned the two major Trp lifetimes to the Trp (χ1=60° and 180°) rotamers, based on the recent lifetime–rotamer correlation proposed for model cyclic peptides (Pan and Barkley 2004, Biophys J 86:3828–35). We also analyzed the role of the hydrophobic anchor, by comparing the micelle binding of fragments of various lengths including the synthesized full-length protein and detected peculiar differences for protein interaction with the polar headgroups of DM or DPC.  相似文献   

16.
Raja MM  Kinne RK 《Biochemistry》2005,44(25):9123-9129
We have previously shown that C-terminal loop 13 of SGLT1 acts as a major binding domain for the aglucon residues of d-glucose transport inhibitors, phlorizin (Raja, M. M., Tyagi, N. K., and Kinne, R. K. H. (2003) Phlorizin Recognition in a C-terminal Fragment of SGLT1 Studied by Tryptophan Scanning and Affinity Labeling, J. Biol. Chem. 278, 49154-49163) and alkyl glucosides (Raja, M. M., Kipp, H., and Kinne, R. K. H. (2004) C-Terminus Loop 13 of Na(+) Glucose Cotransporter SGLT1 Contains a Binding Site for Alkyl Glucosides, Biochemistry 43, 10944-10951). Topology of this loop with regard to the membrane lipids is hitherto a point of debate. Here we report on in vitro incorporation studies using fluorescence of Trp mutants of loop 13 to determine the position of various parts of the loop with the lipid bilayer. Six single Trp mutants were prepared as described in previous studies (Raja et al., 2003) and subsequently incorporated into DOPC:DOPG (60:40% molar ratio) lipid vesicles. Upon addition of the phospholipids only one mutant, R601W, exhibited no change in the fluorescence intensities, position of maxima, or acrylamide accessibility. Mutants Q581W, E621W, and L630W exhibited the most pronounced blue shifts (3-6 nm) and protection against acrylamide, suggesting a position of these segments within the lipid bilayer. This assumption was confirmed by the result that the fluorescence of only these mutants was quenched by doxyl spin membrane embedded labels in the 5- or 12-positions of the acyl side chain of phospholipids. The other parts of the peptide appear to remain outside of the lipid vesicles. Trp-591 and Trp-611 showed, although to a different extent, increase in fluorescence, blue shift of maxima, and decrease in acrylamide accessibility but no interaction with the spin-labeled phospholipids. This suggests changes in the conformation of the peptide itself. These conformation changes are probably induced by the interaction of an adjacent lysine rich region of the peptide with the negatively charged DOPG, since in the absence of this lipid no incorporation of loop 13 into the bilayer is observed. Trypsin cleavage experiments of loop 13 in proteoliposomes yield a peptide containing amino acid residues 603 to 614, confirming that this part of the loop is accessible at the extravesicular face of the membranes. The studies show that at least in the in vitro system the part of loop 13 essential for the interaction with the transport inhibitors is located extracellularly, making a similar arrangement in the intact SGLT1 probable.  相似文献   

17.
S Lee  Y Kim 《FEBS letters》1999,460(2):263-269
The solution structure of neuromedin B (NMB) was investigated using two-dimensional nuclear magnetic resonance (NMR) spectroscopy in membrane-mimicking environments. NMB adopts a relaxed helical conformation from Trp(4) to Met(10) in 50% aqueous 2,2, 2-trifluoroethanol (TFE) solution and in 150 mM SDS micelles. Sidechain atoms of the three residues, Trp(4), His(8) and Phe(9) orient toward the same direction and these residues might play a key role on interacting with hydrophobic acyl chains of the phospholipids in the membrane. NOESY experiments performed on NMB in non-deuterated SDS micelle show that aromatic ring protons of Trp(4) and Phe(9) residues are in close contact with methylene protons of SDS micelles. In addition, proton longitudinal relaxation data proved that the interactions between NMB with SDS micelle are characterized as extrinsic interaction. Trp(4) and Phe(9) seem to be important in interaction with receptor and this agrees with the previous studies of structure-activity relationship (Howell, D.C. et al. (1996) Int. J. Pept. Protein Res. 48, 522-531). These conformational features might be helpful in understanding the molecular mechanism of the function of NMB and developing the efficient drugs.  相似文献   

18.
It has been shown that anti-PAH mAb can bind a particular cross-reactant by adopting two distinct “red” and “blue” conformations of its binding sites [N.M. Grubor et al. PNAS 102, 2005, 7453-7458]. In the case of red conformation of pyrene (Py)/anti-PAH mAb (with a broad fluorescence (0,0)-band with fwhm ~ 140 cm−1), the central role in complex formation was played by π-π interactions. The nature of the blue-shifted conformation with very narrow fluorescence (0,0)-band (fwhm ~ 75 cm−1) was left unclear due to the lack of suitable data for comparison. In this work, we suggest spectroscopic and modeling results obtained for the blue conformation of Py in several mAb (including 4D5 mAb) are consistent with π-cation interactions, underscoring the importance of π-cation interaction in ligand binding and stabilization in agreement with earlier modeling studies [J-L. Pellequer, et al. J. Mol. Biol. 302, 2000, 691-699]. We propose considerable narrowing of the fluorescence origin band of ligand in the protein environment could be regarded as a simple indicator of π-cation interactions. Since 4D5 mAb forms only the blue-shifted conformation, while anti-PAH and 8E11 mAbs form both blue- and red-shifted conformations, we suggest mAb interactions, with Py molecules lacking H-bonding functionality, may induce distinct conformations of mAb binding sites that allow binding by π-π and/or π-cation interactions.  相似文献   

19.
Mutants of the dimeric Escherichia coli trp aporepressor are constructed by replacement of the two tryptophan residues in each subunit in order to assess the effects on equilibrium and kinetic fluorescence properties of the folding reaction. The three kinetic phases detected by intrinsic tryptophan fluorescence in refolding of the wild-type aporepressor are also observed in folding of both Trp 19 to Phe and Trp 99 to Phe single mutants, demonstrating that these phases correspond to global rather than local conformational changes. Comparison of equilibrium fluorescence (Royer, C.A., Mann, C.J., & Matthews, C.R., 1993, Protein Sci. 2, 1844-1852) and circular dichroism transition curves induced by urea shows that replacement of either Trp 19 or Trp 99 results in noncoincident behavior. Unlike the wild-type protein (Gittelman, M.S. & Matthews, C.R., 1990, Biochemistry 29, 7011-7020), tertiary and/or quaternary structures are disrupted at lower denaturant concentration than is secondary structure. The equilibrium results can be interpreted in terms of enhancement in the population of a monomeric folding intermediate in which the lone tryptophan residue is highly exposed to solvent, but in which substantial secondary structure is retained. The location of both mutations at the interface between the two subunits (Zhang, R.G., et al., 1987, Nature 327, 591-597) provides a simple explanation for this phenomenon.  相似文献   

20.
von Willebrand factor (vWF) plays a central role in blood coagulation, mediating the adhesion of the initial platelet plug to the subendothelium, and serving as the carrier for factor VIII (FVIII) in the circulation. In previous studies, we have mapped the epitope for an anti-vWF monoclonal antibody which inhibits the interaction between FVIII and vWF to a region spanning Thr78 to Thr96 of the mature protein (Bahou, W.F., Ginsburg, D., Sikkink, R., Litwiller, R., and Fass, D. N. (1989) J. Clin. Invest. 84, 56-61). We now report the identification of a mutation within this region of vWF that results in decreased FVIII binding. Sequence analysis of polymerase chain reaction amplified platelet vWF mRNA from a von Willebrand disease (vWD) patient with a disproportionately low FVIII level identified a single nucleotide substitution (G----A), resulting in the conversion of Arg91----Gln. Recombinant vWF carrying this substitution showed decreased binding to FVIII compared with wild-type vWF or vWF carrying a polymorphic substitution in the same region (Arg89----Gln). These observations suggest a critical role for Arg91 in the interaction of vWF with FVIII and identify the molecular mechanism for a variant of vWD associated with unusually low FVIII levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号