首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B M Huang  C C Hsu  S J Tsai  C C Sheu  S F Leu 《Life sciences》2001,69(22):2593-2602
The stimulatory effect of Cordyceps sinensis (CS) on MA-10 mouse Leydig tumor cell steroidogenesis was previously demonstrated in our laboratory. In the present studies, we further determined the effect of CS on steroidogenesis in purified normal mouse Leydig cells. Different concentrations of CS (0.1-10 mg/ml) were added to Leydig cells without or with human chorionic gonadotropin (hCG) (50 ng/ml), and the steroid production was determined by radioimmunoassay (RIA). The results illustrated that CS stimulated normal mouse Leydig cell steroidogenesis in a dose-dependent relationship. CS at 3 mg/ml significantly stimulated testosterone production (p<0.05). Concerning the temporal relationship, CS at 3 mg/ml stimulated maximal testosterone production between 2 to 3 hr. Interestingly, hCG-stimulated testosterone productions were suppressed by CS in a dose-dependent relationship. CS also reduced dbcAMP-stimulated testosterone productions, which indicated that CS affected signal transduction pathway of steroidogenesis after the formation of cyclic AMP. Moreover, cycloheximide inhibited CS-treated mouse Leydig cell testosterone production, suggesting that new protein synthesis was required for CS-stimulated steroidogenesis.  相似文献   

2.
Cordycepin, a pure compound of Cordyceps sinensis (CS), is known as an adenosine analog. We have found that CS stimulated Leydig cell steroidogenesis. Here we investigated the in vivo and in vitro effects of cordycepin in primary mouse Leydig cell steroidogenesis. The results indicate that cordycepin increased the plasma testosterone concentration. Cordycepin also stimulated in vitro mouse Leydig cell testosterone production in dose- and time-dependent manners. We further observed that cordycepin regulated the mRNA expression of the A1, A2a, A2b, and A3 adenosine receptors in the mouse Leydig cells, and that antagonists of A1, A2a, and A3 suppressed testosterone production 20-50% testosterone production. Furthermore, Rp-cAMPS (cAMP antagonist) and Protein Kinase A (PKA) inhibitors (H89 and PKI) significantly decreased cordycepin-induced testosterone production, indicating that the PKA-cAMP signal pathway was activated by cordycepin through adenosine receptors. Moreover, cordycepin induced StAR protein expression, and H89 suppressed cordycepin-induced steroidogenic acute regulatory (StAR) protein expression. Conclusively, cordycepin associated with adenosine receptors to activate cAMP-PKA-StAR pathway and steroidogenesis in the mouse Leydig cells.  相似文献   

3.
4.
Contribution of the protein kinase A (PKA) and protein kinase C (PKC) signalling pathways to the regulation of 11beta-hydroxysteroid dehydrogenase type II (HSD11B2) gene expression was investigated in human breast cancer cell line MCF-7. Treatment of the cells with an adenylyl cyclase activator, forskolin, known to stimulate the PKA pathway, resulted in an increase in HSD11B2 mRNA content. Semi-quantitative RT-PCR revealed attenuation of the effect of forskolin by phorbol ester, tetradecanoyl phorbol acetate (TPA), an activator of the PKC pathway. It was also demonstrated that specific inhibitors significantly reduced the effect of activators of the two pathways. Stimulation of the PKA pathway did not affect, whereas stimulation of the PKC pathway significantly reduced MCF-7 cell proliferation in a time-dependent manner. A cell growth inhibitor, dexamethasone, at high concentrations, caused a 40% decrease in proliferation of MCF-7 cells and this effect was abolished under conditions of increased HSD11B2 expression. It was concluded that in MCF-7 cells, stimulation of the PKA signal transduction pathway results in the induction of HSD11B2 expression and that this effect is markedly reduced by activation of the PKC pathway. Activation of the PKC pathway also resulted in inhibition of cell proliferation, while activation of the PKA pathway abolished the antiproliferative effect of dexamethasone. These effects might be due to oxidation of dexamethasone by the PKA-inducible HSD11B2.  相似文献   

5.
Tremella mesenterica (TM), a yellow jelly mushroom, has been traditionally used as tonic food to improve body condition in Chinese society for a long time. We have previously demonstrated that TM reduced in vitro hCG-treated steroidogenesis in MA-10 mouse Leydig tumor cells without any toxicity effect. In the present study, the mechanism how TM suppressed hCG-treated steroidogenesis in MA-10 cells was investigated. MA-10 cells were treated with vehicle, human chorionic gonadotropin (hCG, 50 ng/ml), or different reagents with or without TM to clarify the effects. TM significantly suppressed progesterone production with the presences of forskolin (10 and 100 microM) or dbcAMP (0.5 and 1mM), respectively, in MA-10 cells (p<0.05), which indicated that TM suppressed steroidogenesis after PKA activation along the signal pathway. Beyond our expectation, TM induced the expression of steroidogenic acute regulatory (StAR) protein with or without hCG treatments. However, TM profoundly decreased P450 side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzyme activities without any influences on the expression of both enzymes. These inhibitions on steroidogenic enzyme activities might counteract the stimulation of StAR protein expression. In conclusion, results suggest that TM suppressed hCG-treated steroidogenesis in MA-10 cells by inhibiting PKA signal pathway and steroidogenic enzyme activities.  相似文献   

6.
We have previously demonstrated that treatment of the human keratinocyte cell line NCTC 2544 with a UVB dose equivalent to 1h exposure (100 mJ/cm2) results in a significant increase of IL-8 production. In this study, we use specific inhibitors to investigate the role of both PKA- and PKC-mediated pathways in the regulation of UVB-induced IL-8 expression in NCTC 2544 cell line. We show here that the treatment of irradiated human keratinocytes with PKA inhibitors [H89 and PKA inhibitor (PKAi)] induced a significant decrease of IL-8 production at both mRNA and protein levels. However, the regulation of IL-8 production seems to be mediated via a cAMP-independent PKA pathway, since drugs known to enhance cAMP concentrations [PGE2, cholera toxin and dibutyryl cAMP] decrease IL-8 production in irradiated cells by down-regulating NF-kappa B activation in response to UVB radiation. Using PMA (a potent pharmacological activator of PKC) and calphostin C (a specific PKC inhibitor), we demonstrated an up-regulation of IL-8 in NCTC 2544 cells and a down-regulation of the cytokine in UVB-irradiated cells, respectively. We also observed that in our experimental conditions, staurosporine, an inhibitor of both PKC and PMA-stimulated cellular responses, does not involve PKC inhibition in irradiated cells and significantly decreased NF-kappa B activity in response to UVB radiation. Finally, we concluded that a cAMP-independent PKA activation and a PKC-associated pathway are probably involved in the regulation of UVB-induced IL-8 synthesis in human keratinocytes.  相似文献   

7.
8.
Perilipin and ADRP, located on the surface of intracellular lipid droplets, are proposed to be involved in adipocyte lipid metabolism. The aim of the present study was to investigate the effect of PKA and PKC activities on the distribution of perilipin and ADRP in primary cultured adrenal cells, and the role of ERK in PMA- and calphostin C-induced steroidogenesis. Immunofluorescence staining indicated that in addition to p160, a capsular protein of steroidogenic lipid droplets, perilipin and ADRP were localized on the lipid droplet surface. Stimuli such as activation of PKA by db cAMP or inhibition of PKC by calphostin C, which increase corticosterone synthesis in various magnitudes, caused detachment of p160 and perilipin, but not ADRP, from the lipid droplet surface. Activation of PKC by PMA induced increase in corticosterone synthesis, however, it did not affect the distribution of perilipin, p160, or ADRP on the lipid droplet surface, suggesting the presence of mechanisms for promoting sterodiogensis other than causing detachment of lipid droplet surface proteins. We further demonstrated that ERK pathway was involved in PMA-induced steroidogenesis, since PD98059, specific inhibitor of MEK, blocked the increases in steroidogenesis and phosphorylation of ERK caused by PMA, but not by cAMP-PKA. These data indicate that p160, perilipin, and ADRP were all located on the lipid droplet surface in rat adrenal cells. On the basis of its non-responsiveness to lipolytic stimulation, ADRP may be a structural protein of the lipid droplet surface, whereas their immediate response to lipolytic stimuli suggest that perilipin and p160 are functional proteins. PKC regulates adrenal steroidogenesis through ERK cascade, whereas PKA pathway does not involve ERK.  相似文献   

9.
Liu MY  Lai HY  Yang BC  Tsai ML  Yang HY  Huang BM 《Life sciences》2001,68(8):849-859
Lead is an environmental and occupational pollutant. It has been reported that lead affects the male reproductive system in humans and animals. However, the cellular mechanism of the adverse effect of lead on Leydig cell steroidogenesis remains unknown. To clarify whether lead has a direct effect on Leydig cells and how lead affects Leydig cells, MA-10 cells, a mouse Leydig tumor cell line, were exploited in this study. Lead acetate significantly inhibited hCG- and dbcAMP-stimulated progesterone production in MA-10 cells at 2 h. Steroid production stimulated by hCG or dbcAMP were reduced by lead. The mechanism of lead in reducing MA-10 cell steroidogenesis was further investigated. The expression of Steroidogenic Acute Regulatory (StAR) protein and the activities of P450 side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzymes were detected. Cells were treated with dbcAMP, 22R-hydroxycholesterol or pregnenolone alone or in combination with lead acetate ranging from 10(-8) to 10(-5) M for 2 h. The expression of StAR protein stimulated by dbcAMP was suppressed by lead at about 50%. Progesterone productions treated with 22R-hydroxycholesterol or pregnenolone were reduced 30-40% in lead-treated MA-10 cells. These data suggest that lead directly inhibited steroidogenesis by decreasing StAR protein expression and the activities of P450scc and 3beta-HSD enzymes with a dose-response trend in MA-10 cells. Moreover, cadmium, a calcium channel blocker, abolished inhibitory effect of lead on MA-10 cell steroid production. This indicates that lead might act on calcium channel to regulate MA-10 cell steroidogenesis.  相似文献   

10.
11.
Exposure of beta-adrenergic receptors (beta ARs) to agonists causes rapid desensitization of the receptor-stimulated adenylyl cyclase response. Three main mechanisms have been implicated in this process: phosphorylation of the receptors by the cAMP-dependent protein kinase (PKA), phosphorylation by the specific agonist-dependent beta AR kinase, and sequestration of the receptors away from the cell surface. By applying inhibitors of these processes to digitonin-permeabilized A431 cells we investigated their contributions to beta AR desensitization. Each process could be selectively inhibited: PKA-dependent phosphorylation by an inhibitor peptide (amino acids 1-24 of the heat-stable inhibitor of PKA (PKI], beta AR kinase-dependent phosphorylation by heparin, and sequestration by concanavalin A. In permeabilized cells, heparin plus PKI completely blocked agonist-induced phosphorylation of the beta ARs. Desensitization was assessed by quantitating the signal transduction efficacy of the system. At high agonist concentrations (approximately 1 microM) up to 70% desensitization occurred. Complete blockade of this desensitization required the concurrent inhibition of all three pathways. When individual pathways were blocked it could be demonstrated that either the PKA or beta AR kinase mechanisms alone resulted in 40-50% desensitization whereas sequestration alone caused 20-30% desensitization. At low agonist concentrations (approximately 10 nM), the PKA pathway was selectively activated. These data indicate that while desensitization mediated via the three different mechanisms can occur independently, the quantitative contributions are not additive. Such findings suggest distinct but overlapping physiological roles for each mechanism in controlling receptor function.  相似文献   

12.
Although the corpus luteum (CL) is not known as a target tissue for thyrotropin (TSH), this hormone increases progesterone production by porcine luteal cells cultured in vitro. In this study we investigated the optimal conditions for TSH-stimulated progesterone secretion as well as the involvement of protein kinase A (PKA) and protein kinase C (PKC) in the mechanism of TSH action on porcine luteal cells. To study the PKA and PKC signaling mechanisms, luteal cells collected from mature CL were incubated with the inhibitor of PKA and potent activators of both kinases: PKA-forskolin and PKC-phorbol ester 12-myriistate-13-acetate (PMA). The PKA inhibitor totally suppressed progesterone production in TSH alone, forskolin alone and in TSH plus forskolin-stimulated luteal cells. Forskolin increased basal (P < 0.05) and TSH-stimulated (P < 0.05) progesterone secretion and cAMP accumulation (P < 0.05). Forskolin and PMA added together to control (non-TSH-treated) luteal cells had an additive effect on progesterone production. In TSH-treated cells, the effect of PMA was statistically significant but did not show an additive effect with forskolin. Further PMA did not affect cAMP accumulation in control and TSH-treated luteal cells. Treatment of control and TSH-treated luteal cells with forskolin and PMA together showed the same increase in cAMP accumulation as with forskolin alone. This is the first demonstration that TSH acts on luteal cell steroidogenesis by activation of the cAMP/PKA second messenger system and also that the PKC signaling pathway may be involved in luteal TSH action on the corpus luteum.  相似文献   

13.
14.
15.
Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.  相似文献   

16.
We analysed the signaling pathways involved in myogenic differentiation of primary cultures of rat satellite cells using substances targeting the protein kinase C (PKC) and the cAMP protein kinase (PKA) pathways. We have previously shown that iso-H7, which putatively inhibits both PKC and PKA, strongly stimulates satellite cell differentiation, as well as the PKA inhibitor HA 1004. In the study reported here, the effects of iso-H7 on satellite cell differentation were compared to those observed in the presence of agents which reduce PKC activity. It was shown that treatments with the highly specific PKC inhibitor GF109203X or with 12-O-tetradecanoylphorbol 13-acetate (TPA) which induced a partial PKC downregulation, did not significantly alter myogenic differentiation. Northern blot analyses showed that iso-H7 activated the expression of myogenin but not that of MyoD mRNA. Concurrently, iso-H7 increased myosin light-chain mRNA expression. In contrast, TPA had no effect on these syntheses. Taken together, these results showed that iso-H7 did not act intracellularly as a PKC inhibitor but rather as a PKA inhibitor as previously suggested. Our results are compatible with the hypothesis that a reduction in PKA activity controls satellite cell myogenesis through an increased myogenin mRNA expression.Abbreviations PKC protein kinase C - PKA cAMP-dependent protein kinase - CK creatine kinase - iso-H7 1-(5-isoquinolinesulfonyl)-3-methylpiperazine - H7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine - HA 1004 N-(3-hydroxyethyl)-1-piperazine ethanesulfonate - TPA 12-O-tetradecanoyl phorbol 13-acetate - MLC myosin light chain - GAPDH glyceraldehyde 3-phosphate deshydrogenase  相似文献   

17.
Co-cultures of lutropin receptor (LHR) positive and negative Leydig cells were used to test the hypothesis that the LHR provokes phosphorylation of the extracellular regulated kinases (ERK1/2) using intracellular and intercellular pathways. Addition of hCG to MA-10 cells (LHR positive) stimulates phosphorylation of the EGF receptor (EGFR) and ERK1/2 whereas addition of hCG to I-10 cells (LHR negative) does not. Addition of hCG to co-cultures of MA-10 and I-10 cells rapidly stimulates the phosphorylation of the EGFR and ERK1/2 in I-10 cells, however. Transfection of interfering constructs shows that the LHR-mediated activation of Fyn in MA-10 cells is necessary for the phosphorylation of the EGFR and ERK1/2 in I-10 cells. This pathway can also be demonstrated in MA-10 cells but the phosphorylation of ERK1/2 in MA-10 cells also involves a second pathway mediated by protein kinase A (PKA). We propose that the LHR-mediated stimulation of the ERK1/2 cascade in Leydig cells depends on two independent pathways. One is intracellular and is mediated by PKA. The second is mediated by Fyn and it involves the release of soluble factors that act to phosphorylate the EGFR in an autocrine/paracrine fashion.  相似文献   

18.
19.
Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 micro m) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 micro m Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号