首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Document classification is a wide-spread problem with many applications, from organizing search engine snippets to spam filtering. We previously described Textpresso, a text-mining system for biological literature, which marks up full text according to a shallow ontology that includes terms of biological interest. This project investigates document classification in the context of biological literature, making use of the Textpresso markup of a corpus of Caenorhabditis elegans literature.  相似文献   

2.
Gene function annotation remains a key challenge in modern biology. This is especially true for high-throughput techniques such as gene expression experiments. Vital information about genes is available electronically from biomedical literature in the form of full texts and abstracts. In addition, various publicly available databases (such as GenBank, Gene Ontology and Entrez) provide access to gene-related information at different levels of biological organization, granularity and data format. This information is being used to assess and interpret the results from high-throughput experiments. To improve keyword extraction for annotational clustering and other types of analyses, we have developed a novel text mining approach, which is based on keywords identified at the level of gene annotation sentences (in particular sentences characterizing biological function) instead of entire abstracts. Further, to improve the expressiveness and usefulness of gene annotation terms, we investigated the combination of sentence-level keywords with terms from the Medical Subject Headings (MeSH) and Gene Ontology (GO) resources. We find that sentence-level keywords combined with MeSH terms outperforms the typical 'baseline' set-up (term frequencies at the level of abstracts) by a significant margin, whereas the addition of GO terms improves matters only marginally. We validated our approach on the basis of a manually annotated corpus of 200 abstracts generated on the basis of 2 cancer categories and 10 genes per category. We applied the method in the context of three sets of differentially expressed genes obtained from pediatric brain tumor samples. This analysis suggests novel interpretations of discovered gene expression patterns.  相似文献   

3.
SUMMARY: BioIE is a rule-based system that extracts informative sentences relating to protein families, their structures, functions and diseases from the biomedical literaturE. Based on manual definition of templates and rules, it aims at precise sentence extraction rather than wide recall. After uploading source text or retrieving abstracts from MEDLINE, users can extract sentences based on predefined or user-defined template categories. BioIE also provides a brief insight into the syntactic and semantic context of the source-text by looking at word, N-gram and MeSH-term distributions. Important Applications of BioIE are in, for example, annotation of microarray data and of protein databases. AVAILABILITY: http://umber.sbs.man.ac.uk/dbbrowser/bioie/  相似文献   

4.

Background  

With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE? abstracts, full-text articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented in the open-source Lucene search engine.  相似文献   

5.
The biological literature databases continue to grow rapidly with vital information that is important for conducting sound biomedical research and development. The current practices of manually searching for information and extracting pertinent knowledge are tedious, time-consuming tasks even for motivated biological researchers. Accurate and computationally efficient approaches in discovering relationships between biological objects from text documents are important for biologists to develop biological models. The term "object" refers to any biological entity such as a protein, gene, cell cycle, etc. and relationship refers to any dynamic action one object has on another, e.g. protein inhibiting another protein or one object belonging to another object such as, the cells composing an organ. This paper presents a novel approach to extract relationships between multiple biological objects that are present in a text document. The approach involves object identification, reference resolution, ontology and synonym discovery, and extracting object-object relationships. Hidden Markov Models (HMMs), dictionaries, and N-Gram models are used to set the framework to tackle the complex task of extracting object-object relationships. Experiments were carried out using a corpus of one thousand Medline abstracts. Intermediate results were obtained for the object identification process, synonym discovery, and finally the relationship extraction. For the thousand abstracts, 53 relationships were extracted of which 43 were correct, giving a specificity of 81 percent. These results are promising for multi-object identification and relationship finding from biological documents.  相似文献   

6.
Textpresso Site Specific Recombinases ( http://ssrc.genetics.uga.edu/ ) is a text‐mining web server for searching a database of more than 9,000 full‐text publications. The papers and abstracts in this database represent a wide range of topics related to site‐specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR‐activated transgenes/knockins. The database also includes reports describing SSR‐based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR‐based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text‐mining resource available for the literature describing the biology and technical applications of SSRs. genesis 47:842–846, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Search engines running on MEDLINE abstracts have been widely used by biologists to find publications that are related to their research. The existing search engines such as PubMed, however, have limitations when applied for the task of seeking textual evidence of relations between given concepts. The limitations are mainly due to the problem that the search engines do not effectively deal with multi-term queries which may imply semantic relations between the terms. To address this problem, we present MedEvi, a novel search engine that imposes positional restriction on occurrences matching multi-term queries, based on the observation that terms with semantic relations which are explicitly stated in text are not found too far from each other. MedEvi further identifies additional keywords of biological and statistical significance from local context of matching occurrences in order to help users reformulate their queries for better results. AVAILABILITY: http://www.ebi.ac.uk/tc-test/textmining/medevi/  相似文献   

8.
9.
Text processing through Web services: calling Whatizit   总被引:1,自引:0,他引:1  
MOTIVATION: Text-mining (TM) solutions are developing into efficient services to researchers in the biomedical research community. Such solutions have to scale with the growing number and size of resources (e.g. available controlled vocabularies), with the amount of literature to be processed (e.g. about 17 million documents in PubMed) and with the demands of the user community (e.g. different methods for fact extraction). These demands motivated the development of a server-based solution for literature analysis. Whatizit is a suite of modules that analyse text for contained information, e.g. any scientific publication or Medline abstracts. Special modules identify terms and then link them to the corresponding entries in bioinformatics databases such as UniProtKb/Swiss-Prot data entries and gene ontology concepts. Other modules identify a set of selected annotation types like the set produced by the EBIMed analysis pipeline for proteins. In the case of Medline abstracts, Whatizit offers access to EBI's in-house installation via PMID or term query. For large quantities of the user's own text, the server can be operated in a streaming mode (http://www.ebi.ac.uk/webservices/whatizit).  相似文献   

10.

Background  

Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively.  相似文献   

11.

Background  

Many practical tasks in biomedicine require accessing specific types of information in scientific literature; e.g. information about the results or conclusions of the study in question. Several schemes have been developed to characterize such information in scientific journal articles. For example, a simple section-based scheme assigns individual sentences in abstracts under sections such as Objective, Methods, Results and Conclusions. Some schemes of textual information structure have proved useful for biomedical text mining (BIO-TM) tasks (e.g. automatic summarization). However, user-centered evaluation in the context of real-life tasks has been lacking.  相似文献   

12.
To allow efficient and systematic retrieval of statements from Medline we have developed EBIMed, a service that combines document retrieval with co-occurrence-based analysis of Medline abstracts. Upon keyword query, EBIMed retrieves the abstracts from EMBL-EBI's installation of Medline and filters for sentences that contain biomedical terminology maintained in public bioinformatics resources. The extracted sentences and terminology are used to generate an overview table on proteins, Gene Ontology (GO) annotations, drugs and species used in the same biological context. All terms in retrieved abstracts and extracted sentences are linked to their entries in biomedical databases. We assessed the quality of the identification of terms and relations in the retrieved sentences. More than 90% of the protein names found indeed represented a protein. According to the analysis of four protein-protein pairs from the Wnt pathway we estimated that 37% of the statements containing such a pair mentioned a meaningful interaction and clarified the interaction of Dkk with LRP. We conclude that EBIMed improves access to information where proteins and drugs are involved in the same biological process, e.g. statements with GO annotations of proteins, protein-protein interactions and effects of drugs on proteins. AVAILABILITY: Available at http://www.ebi.ac.uk/Rebholz-srv/ebimed  相似文献   

13.
14.
Words appearing in abstracts of scientific articles are often useful as search terms, particularly those words and word patterns that are unique to the relevant field of endeavour. In view of the heightened interest in obtaining information about alternatives to animal testing, efforts directed toward enhancing retrieval of pertinent references from the biomedical literature are warranted. Words and phrases, and word-phrase co-occurrences describing methods of experimentation in abstracts about alternatives to skin-irritation testing in animals, were evaluated with regard to retrieval efficiency in the National Library of Medicine database, Toxline(. Precision of retrieval was defined as the number of pertinent references found in the total number of citations retrieved. Retrieval precision values ranged from 0.25% to 100%.  相似文献   

15.

Background  

The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature.  相似文献   

16.
The un-biased and reproducible interpretation of high-content gene sets from large-scale genomic experiments is crucial to the understanding of biological themes, validation of experimental data, and the eventual development of plans for future experimentation. To derive biomedically-relevant information from simple gene lists, a mathematical association to scientific language and meaningful words or sentences is crucial. Unfortunately, existing software for deriving meaningful and easily-appreciable scientific textual ‘tokens’ from large gene sets either rely on controlled vocabularies (Medical Subject Headings, Gene Ontology, BioCarta) or employ Boolean text searching and co-occurrence models that are incapable of detecting indirect links in the literature. As an improvement to existing web-based informatic tools, we have developed Textrous!, a web-based framework for the extraction of biomedical semantic meaning from a given input gene set of arbitrary length. Textrous! employs natural language processing techniques, including latent semantic indexing (LSI), sentence splitting, word tokenization, parts-of-speech tagging, and noun-phrase chunking, to mine MEDLINE abstracts, PubMed Central articles, articles from the Online Mendelian Inheritance in Man (OMIM), and Mammalian Phenotype annotation obtained from Jackson Laboratories. Textrous! has the ability to generate meaningful output data with even very small input datasets, using two different text extraction methodologies (collective and individual) for the selecting, ranking, clustering, and visualization of English words obtained from the user data. Textrous!, therefore, is able to facilitate the output of quantitatively significant and easily appreciable semantic words and phrases linked to both individual gene and batch genomic data.  相似文献   

17.
MOTIVATION: Protein-protein interactions play critical roles in biological processes, and many biologists try to find or to predict crucial information concerning these interactions. Before verifying interactions in biological laboratory work, validating them from previous research is necessary. Although many efforts have been made to create databases that store verified information in a structured form, much interaction information still remains as unstructured text. As the amount of new publications has increased rapidly, a large amount of research has sought to extract interactions from the text automatically. However, there remain various difficulties associated with the process of applying automatically generated results into manually annotated databases. For interactions that are not found in manually stored databases, researchers attempt to search for abstracts or full papers. RESULTS: As a result of a search for two proteins, PubMed frequently returns hundreds of abstracts. In this paper, a method is introduced that validates protein-protein interactions from PubMed abstracts. A query is generated from two given proteins automatically and abstracts are then collected from PubMed. Following this, target proteins and their synonyms are recognized and their interaction information is extracted from the collection. It was found that 67.37% of the interactions from DIP-PPI corpus were found from the PubMed abstracts and 87.37% of interactions were found from the given full texts. AVAILABILITY: Contact authors.  相似文献   

18.
口腔微生态失衡导致口腔异味的研究   总被引:1,自引:0,他引:1  
目的介绍口腔微生态失调与口腔疾病的关系,口腔疾病出现口腔气味异常的机制。综合分析口腔微生态与口腔健康的研究动态及意义。展望口腔微生态调整在口腔疾病治疗中的作用研究,尤其在消除口腔异昧的积极作用。方法由第一、二作者应用计算机通过pubmed检索NCBI数据库1992年至2007年相关文献,检索词为“Micro ecology”,限定语言种类为“English”;同时检索CNKI全文数据库、维普全文数据库1995年至2007年相关文献,检索词为“微生态”,限定语言种类为中文。纳入标准:文章内容与口腔微生态相关的研究、以及在口腔疾病研究领域有关。排除标准:较陈旧的文献和重复研究。结果共收集到106篇相关文献,21篇文献纳入本文,其中,19篇为综述和述评类文献,19篇为中文杂志,2篇为外文杂志。结论致病菌大量生长繁殖,口腔微生态失调,菌斑内微生物之间以及机体与菌斑之间相互作用分解蛋白产生硫化物,这些代谢产物包括H2S、CH3SH、CH3SCH3、吲哚、甲基吲哚、挥发脂肪酸和聚胺等发出刺激性气味,产生口腔异味。治疗口腔异味应该考虑平衡口腔微生态,调整口腔菌群。口腔异味的治疗又有利于口腔菌群平衡。提示我们治疗口腔疾病应该考虑口腔微生态平衡。  相似文献   

19.
When reading bioscience journal articles, many researchers focus attention on the figures and their captions. This observation led to the development of the BioText literature search engine [1], a freely available Web-based application that allows biologists to search over the contents of Open Access Journals, and see figures from the articles displayed directly in the search results. This article presents a qualitative assessment of this system in the form of a usability study with 20 biologist participants using and commenting on the system. 19 out of 20 participants expressed a desire to use a bioscience literature search engine that displays articles'' figures alongside the full text search results. 15 out of 20 participants said they would use a caption search and figure display interface either frequently or sometimes, while 4 said rarely and 1 said undecided. 10 out of 20 participants said they would use a tool for searching the text of tables and their captions either frequently or sometimes, while 7 said they would use it rarely if at all, 2 said they would never use it, and 1 was undecided. This study found evidence, supporting results of an earlier study, that bioscience literature search systems such as PubMed should show figures from articles alongside search results. It also found evidence that full text and captions should be searched along with the article title, metadata, and abstract. Finally, for a subset of users and information needs, allowing for explicit search within captions for figures and tables is a useful function, but it is not entirely clear how to cleanly integrate this within a more general literature search interface. Such a facility supports Open Access publishing efforts, as it requires access to full text of documents and the lifting of restrictions in order to show figures in the search interface.  相似文献   

20.
MOTIVATION: Full-text documents potentially hold more information than their abstracts, but require more resources for processing. We investigated the added value of full text over abstracts in terms of information content and occurrences of gene symbol--gene name combinations that can resolve gene-symbol ambiguity. RESULTS: We analyzed a set of 3902 biomedical full-text articles. Different keyword measures indicate that information density is highest in abstracts, but that the information coverage in full texts is much greater than in abstracts. Analysis of five different standard sections of articles shows that the highest information coverage is located in the results section. Still, 30-40% of the information mentioned in each section is unique to that section. Only 30% of the gene symbols in the abstract are accompanied by their corresponding names, and a further 8% of the gene names are found in the full text. In the full text, only 18% of the gene symbols are accompanied by their gene names.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号