首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large numbers of maize chromosome 9 can be collected with high purity by flow cytometric sorting of chromosomes isolated from a disomic maize chromosome addition line of oat. Metaphase chromosome suspensions were prepared from highly synchronized seedling root-tips of an oat-maize chromosome-9 addition line (OM9) and its parental oat and maize lines. Chromosomes were stained with propidium iodide for flow cytometric analysis and sorting. Flow-karyotypes of the oat-maize addition line showed an extra peak not present in the parental oat line. This peak is due to the presence of a maize chromosome-9 pair within the genome of OM9. Separation of maize chromosome 9 by flow cytometric sorting of a chromosome preparation from a normal maize line was not possible because of its size similarity (DNA content) to maize chromosomes 6, 7 and 8. However, it is possible to separate maize chromosome 9 from oat chromosomes and chromatids. An average of about 6×103 chromosomes of maize chromosome 9 can be collected by flow-sorting from chromosomes isolated from 30 root tips (ten seedlings) of the oat-maize addition line. Purity of the maize chromosome 9, sorted from the oat-maize chromosome addition line, was estimated to be more than 90% based on genomic in situ hybridization analysis. Sorting of individual chromosomes provides valuable genomic tools for physical mapping, library construction, and gene isolation. Received: 28 February 2000 / Accepted: 14 July 2000  相似文献   

2.
Flow cytogenetics and chromosome sorting   总被引:1,自引:0,他引:1  
L S Cram 《Human cell》1990,3(2):99-106
This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.  相似文献   

3.
Chromosome 1R was microdissected and collected from mitotic metaphase spreads of rye (Secale cereale L.) by using glass needles. The isolated chromosomes were amplified in vitro by Sau3A linker adaptor-mediated polymerase chain reaction (PCR). After amplification, the presence of rye-specific DNA was verified by Southern hybridization. The second-round PCR products from five 1R chromosomes were cloned into a plasmid vector to create a chromosome-specific library, which produced approximately 220,000 recombinant clones. Characterization of the microclone library showed that the 172 clones evaluated ranged in size from 300–1800 bp with an average size of 950 bp, of which approximately 42% were medium/high copy and 58% were low/unique copy clones. Chromosome in situ hybridization confirmed that the PCR products from microdissected chromosomes originated from chromosome 1R, indicating that many chromosome 1R-specific sequences were present in the library. Received: 5 December 1998; in revised form: 15 April 1999 / Accepted: 29 April 1999  相似文献   

4.
We have applied a refined microdissection procedure to create a plasmid library of the barley (Hordeum vulgare L.) chromosome arm 1HS. The technical improvements involved include synchronization of meristematic root tissue, a metaphase drop-spread technique, paraffin protection of the collection drop to avoid evaporation, and a motorized and programmable microscope stage. Thirteen readily-discernible telocentric chromosomes have been excised from metaphases of synchronized root-tip mitoses. After lysis in a collection drop (2 nl), the DNA was purified, restricted withRsaI, ligated into a vector containing universal sequencing primers, and amplified by the polymerase chain reaction. Finally, the amplified DNA was cloned into a standard plasmid vector. The size of the library was estimated to be approximately 44,000 recombinant plasmids, of which approximately 13% can be utilized for RFLP analysis. Tandem repetitive probes could be rapidly excluded from further analysis after colony hybridization with labelled total barley DNA. Analysis of 552 recombinant plasmids established that: (1) the insert sizes ranged between 70 and 1150 bp with a mean of 250 bp, (2) approximately 60% of the clones contained highly repetitive sequences, and (3) all single- or low-copy probes tested originate from chromosome 1HS. Four probes were genetically mapped, using an interspecificH. vulgare xH. spontaneum F2 population. One of these probes was found to be closely linked to theMla locus conferring mildew resistance.  相似文献   

5.
Genome analysis in many plant species is hampered by large genome size and by sequence redundancy due to the presence of repetitive DNA and polyploidy. One solution is to reduce the sample complexity by dissecting the genomes to single chromosomes. This can be realized by flow cytometric sorting, which enables purification of chromosomes in large numbers. Coupling the chromosome sorting technology with next generation sequencing provides a targeted and cost effective way to tackle complex genomes. The methods outlined in this article describe a procedure for preparation of chromosomal DNA suitable for next-generation sequencing.  相似文献   

6.
Microdissection and microcloning of the long arm of human chromosome 7   总被引:4,自引:0,他引:4  
DNA-fragments from the region of the long arm of human chromosme 7 to which the CF-locus has been mapped recently were isolated by microdissection and microcloning. We developed a new fixation procedure resulting in inserts of 1.0–7.0 kb in length with a mean value of 2.9 kb. Regional mapping of three clones on 7q was carried out by the use of different hybrid cell lines containing fragments of human chromosome 7.  相似文献   

7.
Flow sorting of wheat chromosome arms from the ditelosomic line 7BL   总被引:1,自引:0,他引:1  
Flow cytometric analysis confirmed that root tip cells can be synchronized with 1.25 mM hydroxyurea (DNA synthesis inhibitor) for 12 h and 1 μM trifluralin (metaphase blocking reagent) treatment for 5 h. Chromosome suspensions prepared from homogenized tissue were suitable for chromosome sorting. A flow karyotypic histogram showed that the genome of common wheat (Triticum aestivum L.) ‘Chinese Spring’ was divided into 4 chromosome peaks, but the 7BL ditelosomic line had an additional chromosome peak. PCR amplification of sorted chromosome arms indicated that the extra chromosome peak consisted of 7BL telosomics. Some technical details of sample preparation and parameter setting for flow cytometric analysis are described.  相似文献   

8.
A bank of cloned DNA sequences from the distal half of the short arm of human chromosome 2 was generated by using microdissection and microcloning techniques. DNA was purified from 106 chromosomal fragments, manually dissected from peripheral lymphocytes in metaphase, and cloned into the EcoRI site of lambda gt10. A total of 257 putative recombinants were recovered, of which 41% were found to contain human inserts. The mean insert size was 380 base pairs (median size, 83 base pairs), and fewer than 10% of the clones contained highly repetitive sequences. All single-copy sequences examined were shown to map to the short arm of chromosome 2 by using hybrid panels. This technique provides a rapid method of isolating probes specific to a human subchromosomal region to generate linked markers to genetic diseases for which the chromosomal location is known.  相似文献   

9.
The technique of chromosome microdissection and microcloning has been developed for more than 20 years. As a bridge between cytogenetics and molecular genetics, it leads to a number of applications: chromosome painting probe isolation, genetic linkage map and physical map construction, and expressed sequence tags generation. During those 20 years, this technique has not only been benefited from other technological advances but also cross-fertilized with other techniques. Today, it becomes a practicality with extensive uses. The purpose of this article is to review the development of this technique and its application in the field of genomic research. Moreover, a new method of generating ESTs of specific chromosomes developed by our lab is introduced. By using this method, the technique of chromosome microdissection and microcloning would be more valuable in the advancement of genomic research.  相似文献   

10.
Flow cytometry and cell sorting   总被引:1,自引:0,他引:1  
M J Fulwyler 《Blood cells》1980,6(2):173-184
Flow cytometry has become an important research tool in cytology, genetics, immunology, and microbiology. The information gained from cytometric instruments is quantitative and of high statistical precision, enabling resolution of cell subpopulations. Although increasing, application to cytology is hindered by inadequate appreciation of the nature of flow cytometry and the information obtained. Many cytologic questions can be reexamined from the perspective of this technology to obtain knowledge not accessible with conventional techniques. A flow cytometer and cell sorter are described. The physical, biochemical, and functional properties measurable by these systems are discussed.  相似文献   

11.
In most eukaryotes, homologous chromosomes undergo synapsis during the first meiotic prophase. A consequence of mutations that interfere with the fidelity or completeness of synapsis can be failure in the formation or maintenance of bivalents, resulting in univalent formation at diakinesis and production of unbalanced spores or gametes. Such mutations, termed desynaptic mutations, can result in complete or partial sterility. We have examined the effect of the maize desynaptic1-9101 mutation on synapsis, using the nuclear spread technique and electron microscopy to examine microsporocytes ranging from early pachytene until the diplotene stage of prophase I. Throughout the pachytene stage, there was an average of about 10 sites of lateral element divergence (indicating nonhomologous synapsis), and during middle and late pachytene, an average of two and three sites of foldback (intrachromosomal) synapsis, per mutant nucleus, respectively. By the diplotene stage, the number of sites of lateral element divergence had decreased to seven, and there was an average of one foldback synapsis site per nucleus. Lateral element divergence and foldback synapsis were not found in spread pachytene nuclei from normal plants. These results imply that the normal expression of the dsy1 gene is essential for the restriction of chromosome synapsis to homologues. The abundance of nonhomologous synapsis and the persistence of extended stretches of unsynapsed axial elements throughout the pachytene stage of dsy1–9101 meiocytes suggests that this mutation disrupts both the fidelity of homology search and the forward course of the synaptic process. This mutation may identify a maize mismatch repair gene. Dev. Genet. 21:146–159, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Cytogenetic and molecular tools play an increasingly important role in plant genome research. A number of interesting applications that involve chromosome painting, the relationship between specific chromosomes and specific linkage groups, the relationships between physical and genetic distances on linkage maps, and the isolation of genes of interest, have been the subjects of recently published research. The aim of this paper is to review the different techniques available for chromosome microdissection and microcloning, and their use for the study of plant genomes. The quality of chromosomal DNA obtained is considered, and some recent results from our laboratory are presented.  相似文献   

13.
Conditions have been established for the rapid flow analysis of leaf protoplasts of Nicotiana tabacum L. cv. Xanthi using a flow cytometer-cell sorter. A procedure based upon chlorophyll autofluorescence was devised to permit the systematic evaluation of flow conditions in order to identify those under which protoplast damage was minimized. These conditions were employed for the flow sorting of protoplasts, following which it was possible to regenerate the sorted protoplasts into complete plants. The application of flow sorting is discussed for the rapid identification and selection of somatic hybrids produced by protoplast fusion.  相似文献   

14.
15.
染色体微分离和微克隆技术是将细胞遗传学和分子遗传学二紧密结合的一项技术,目前已广泛应用于遗传学、医学等研究领域,具有广阔的应用前景。本综述了该技术发展过程中所应用的不同方法,详细介绍了各种方法的步骤及其优缺点,最后探讨了该技术的应用及展望。  相似文献   

16.
We used the flow sorting capacities of a benchtop FACSCalibur flow cytometer to analyze the phytoplankton community of four different aquatic ecosystems. We show that despite the high optical, mechanistic, and hydrodynamic stress for the cells while sorted, most of the targeted populations could be isolated and grew in mixed culture media subsequent to sorting. Forty-five phytoplankton taxa were isolated, including green algae (29 species), cyanobacteria (eight), diatoms (seven), and cryptomonads (one). The isolation success average was high since 80% of the total sorted populations grew successfully and 47% constituted monocultures. It is noteworthy, however, that some groups could not be isolated, as for example colonial cyanobacteria, chrysophytes, euglenophytes, desmids, or dinoflagellates, and some species such as Cryptomonas sp. were very sensitive to the sorting process. It is proposed that flow cytometric analysis of freshwater phytoplankton might be a relevant tool for water managers and could be applied in some specific cases, such as early monitoring of blooming taxa or basic bio-monitorings of key species. The higher isolation average obtained from the flow sorting can also be powerful for the physiological or molecular study of some taxa after their cultivation.  相似文献   

17.
A large number of microclones obtained by microdissection of the mouse X chromosome have been mapped using an interspecific Mus domesticus/Mus spretus cross. Clones displaying close linkage to a number of loci of known phenotype but unknown gene product, such as mdx (X-linked muscular dystrophy), have been obtained. Over a central 30 cM span of the mouse X chromosome, 17 clones have been mapped and ordered at a sufficient density to contemplate the complete physical mapping of this region that will aid in the isolation of a number of unidentified genes. Some of the mapped microclones detect moderately repetitive sequences that were clustered in several discrete regions of the mouse X chromosome.  相似文献   

18.
19.
Summary Chromosome suspensions were prepared from formaldehyde-fixed, synchronized Vicia faba root tips. After staining with the DNA intercalating fluorochrome propidium iodide, the suspensions were analysed with a flow cytometer. The resulting histograms of integral fluorescence intensity contained peaks similar to those of theoretical V.faba flow karyotypes. From V. Faba cv Inovec (2n = 12) only one peak, corresponding to a single chromosome type (metacentric chromosome), could be discriminated. However, it was found that the peak also contained doublets of acrocentric chromosomes. Bivariate analysis of fluorescence pulse area (chromosome DNA content) and fluorescence pulse width (chromosome length) was necessary to distinguish the metacentric chromosome. To achieve a high degree of purity, a two-step sorting protocol was adopted. During a working day, more than 25 000 metacentric chromosomes (corresponding to 0.2 g DNA) were sorted with a purity of more than 90%. Such chromosomes are suitable for physical gene mapping by in situ hybridization or via the polymerase chain reaction (PCR) and allow the construction of chromosome-specific DNA libraries. While it was only possible to distinguish and sort one chromosome type from V. Faba cv Inovec with the standard karyotype, it was possible to sort with a high degree of purity five out of six chromosome types of the line EFK of V. Faba, which has six pairs of morphologically distinct chromosomes. This result confirmed the possibility of using reconstructed karyotypes to overcome existing problems with the discrimination and flow sorting of individual chromosome types in plants.  相似文献   

20.
Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号