首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 45 毫秒
1.
本研究探索了通过农杆菌介导,超声波辅助处理,转化番木瓜胚性愈伤组织,获得转基因植株的有效方法。分别将含有日本PLDMV 外壳蛋白基因(PTi-Epj-TL-PLDMV)和含有台湾PRSV 菌株、美国夏威夷PRSV 菌株、泰国PRSV 菌株及日本PLDMV 菌株的多元外壳蛋白基因编码序列(PTi-NP-YKT)插入双元载体质粒pGA482G,借助于农杆菌系LBA4404将双元载体上的外壳蛋白基因和新霉素磷酸转移酶基因(nptⅡ)转移到番木瓜品种Sunset 的胚性愈伤组织中,从而获得抗卡那霉素的转化再生植株。试验着重在转化方法上进行探索。结果表明,农杆菌过夜培养后,用高渗透压培养液(1/2 MS 6%蔗糖 1%葡萄糖,pH 5.7)调整至光密度OD_(600(?)m)=0.15-0.20,然后用该菌液感染材料30min,其间辅以超声波处理,可以大大提高转化效率。用15ml 无菌离心管装载胚性愈伤材料进行15s 的超声波处理,在80块被转化的胚性愈伤中获得21个CP 基因G 转化系(26.3%),而在对照处理64块胚性愈伤中仅获得1个转化系(1.6%);在经过15s 的超声波处理48块被转化的胚性愈伤中获得8个CP 基因B 转化系(16.7%),而在对照处理25块胚性愈伤中未出现转化系。上述操作方法用在两种CP 基因转化上均表现出相似的效果。试验还表明:120mg/L 是卡那霉素抗性筛选的最佳浓度。抗性筛选9个月后,在421块胚性愈伤组织中产生了42个抗卡那霉素的转化系。所获得的转基因植株分别用PCR 和Southern 印迹杂交进行了鉴定。  相似文献   

2.
本研究探索了通过农杆菌介导,超声波辅助处理,转化番木瓜胚性愈伤组织,获得转基因植株的有效方法。分别将含有日本PLDMV外壳蛋白基因(PTi-Epj-TL-PLDMV)和含有台湾PRSV菌株、美国夏威夷PRSV菌株、泰国PRSV菌株及日本PLDMV菌株的多元外壳蛋白基因编码序列(PT—NP—YKT)插入双元栽体质粒pGA482G,借助于农杆菌系LBA4404将双元载体上的外壳蛋白基因和新霉素磷酸转移酶基因(nptⅡ)转移到番木瓜品种Sunset的胚性愈伤组织中,从而获得抗卡那霉素的转化再生植株。试验着重在转化方法上进行探索。结果表明,农杆菌过夜培养后,用高渗透压培养液(1/2MS 6%蔗糖 1%葡萄糖,pH5.7)调整至光密度OD600nm=15-0.20,然后用该菌液感染材料30min,其间辅以超声波处理,可以大大提高转化效率。用15ml无菌离心管装载胚性愈伤材料进行15s的超声波处理,在80块被转化的胚性愈伤中获得21个CP基因G转化系(26.3%),而在对照处理64块胚性愈伤中仅获得1个转化系(1.6%);在经过15s的超声波处理48块被转化的胚性愈伤中获得8个CP基因B转化系(16.7%),而在对照处理25块胚性愈伤中未出现转化系。上述操作方法用在两种CP基因转化上均表现出相似的效果。试验还表明:120mg/L是卡那霉素抗性筛选的最佳浓度。抗性筛选9个月后,在421块胚性愈伤组织中产生了42个抗卡那霉素的转化系。所获得的转基因植株分别用PCR和Southern印迹杂交进行了鉴定。  相似文献   

3.
农杆菌介导的雪花莲凝集素基因转入玉米骨干自交系   总被引:14,自引:0,他引:14  
以农杆菌AGL0介导,将雪花莲凝集素基因转入玉米骨干自交系齐319和掖515胚性愈伤组织细胞,从筛选后的抗性愈伤组织获得再生植株。农杆菌浓度和共培养时间均能显著影响侵染后玉米愈伤组织的抗性频率。在农杆菌浓度OD600 0.2~0.3,共培养时间3d时,侵染后玉米愈伤组织的抗性频率最高,平均约4%。对再生植株及其子代基因组DNA的PCR及Southern杂交分析表明雪花莲凝集素基因已经整合到玉米基因组中,并遗传给后代。在蚜虫人工接种试验中,转基因植株上蚜虫的繁殖力为非转基因对照植株上的50%,这表明转基因植株抗蚜性显著增强。  相似文献   

4.
以3个水稻品种的成熟胚诱导的良好胚性愈伤组织为受体,以LycB为目的基因,应用根癌农杆菌介导法对水稻进行遗传转化,同时以抗性愈伤率为依据,对影响转化的几个因素进行优化研究。结果表明:预培养4d、侵染5~10min、农杆菌菌液浓度OD600值0.7~1.0、共培养2d有利于提高转化率。经潮霉素筛选获得的抗性植株经PCR和PCR-Southern分析鉴定,初步证明外源基因LycB已整合到水稻的基因组中。  相似文献   

5.
农杆菌介导的单子叶植物早熟禾的转化   总被引:15,自引:0,他引:15  
利用种子和胚分别在两种培养基K3和K5诱导产生了早熟禾(Poa pratensis L.)一个品种Mado的胚性愈伤组织。K3培养基含有10.0μmol/L的二氯苯氧乙酸(2,4-D)、0.5μmol/L的苄氨基嘌呤(BAP)。K5培养基是K3另加0.5μmol/L的硫酸铜。光照条件为20~30μmol·m~(-2)·s~(-1)、16h光照、8h黑暗。温度保持在24℃。用携有bar基因和gus基因的pDM805质粒转化的农杆菌AGL1对胚性愈伤组织进行转化。共得到4个转基因株系。影响转基因效率的主要因素有愈伤组织的胚性、光照条件、共转化时间、抗生素浓度、选择压力。本研究建立了单子叶早熟禾农杆菌介导的转基因方案。  相似文献   

6.
影响根癌农杆菌介导水稻转化的因素分析   总被引:6,自引:0,他引:6  
尹鸿瑛  安韩冰  安利佳 《植物研究》2001,21(3):437-443,T001
根癌农杆菌与来自水稻成熟种子盾片的愈伤组织共培养,将GUS基因导入水稻愈伤组织,并获得了转基因植株。通过比较影响根癌农杆菌转化频率的各种因素,表明激素配比为2,4-D1mg/L、TDZ0.5mg/L、NAA1mg/L时,可以大大促进籼稻愈伤组织的分化能力;酚类化合物的加入使农杆菌的转化频率提高8.9%-23.5%;共培养时农杆菌的稀释方式及适当调整潮霉素(hygB)的使用浓度影响到农杆菌的转化频率。  相似文献   

7.
利用种子和胚分别在两种培养基K3和K5诱导产生了早熟禾(Poa pratensis L.)一个品种Mado的胚性愈伤组织.K3培养基含有10.0μmol/L的二氯苯氧乙酸(2,4-D)、0.5μmol/L的苄氨基嘌呤(BAP).K5培养基是K3另加0.5μmol/L的硫酸铜.光照条件为20~30 μmol.m-2.s、16 h光照、8 h黑暗.温度保持在24℃.用携有bar基因和gus基因的pDM805质粒转化的农杆菌AGL1对胚性愈伤组织进行转化.共得到4个转基因株系.影响转基因效率的主要因素有愈伤组织的胚性、光照条件、共转化时间、抗生素浓度、选择压力.本研究建立了单子叶早熟禾农杆菌介导的转基因方案.  相似文献   

8.
农杆菌介导寒地水稻遗传转化的研究   总被引:2,自引:0,他引:2  
通过农杆菌介导法,将拟南芥转录激活因子ICE1基因导入寒地品种垦鉴稻10号成熟胚愈伤组织中,将经潮霉素筛选得到的抗性愈伤进行分化,获得了一些再生抗性植株,部分植株经PCR检测为阳性,证明外源目的基因已整合到水稻的染色体上,从而建立了高效水稻遗传转化体系。实验表明:YEB和MS按适当比例混合作为悬浮培养基转化率较高;干燥除菌效果和转化率均优于羧苄青霉素、头孢霉素液体除菌;潮霉素采用低压-高压-低压方式筛选最好;AS和葡萄糖均能提高转化率。  相似文献   

9.
农杆菌介导籼稻优良恢复系bar基因的遗传转化研究   总被引:2,自引:0,他引:2  
应用农杆菌介导转化体系,成功地将含有CaMv35s启动子启动的bar基因导入籼稻幼胚来源的愈伤组织,获得籼稻优良恢复系T461、R402和752三个品种(系)共47个抗除草剂Basta的转基因株系,Southem分析结果表明,转基因植株基因组中检测到bar基因的整合,转基因植株自交后代Basta除草剂抗性鉴定表现出分离,且大多数为1-2个整合位点的孟德尔方式遗传。结果表明,根癌农杆菌介导法可以有效且可靠地转化籼稻。  相似文献   

10.
农杆菌介导的水稻转Bt基因研究   总被引:2,自引:0,他引:2  
通过农杆菌介导法 ,将Bt毒蛋白基因的一种—cryIAb基因导入 2个云南水稻栽培品种(滇系 4号 ,合系 39号 )的愈伤组织中 ,经过潮霉素筛选后 ,获得了一批抗性苗 ,部分苗经PCR检测为阳性 ,GUS组织化学染色分析发现Bt基因已整合到水稻基因组 ,并由此建立了一套有效的水稻遗传转化体系。实验中发现培养器皿的透气性对水稻愈伤组织的形成、生长具有较大的影响 ,提高培养基的渗透势能够提高愈伤组织的分化率。选择合适的洗菌液渗透势能够大大降低洗菌对愈伤组织所造成的损伤 ,从而提高转化率。  相似文献   

11.
高效马铃薯遗传转化体系的建立及甜蛋白基因的导入   总被引:25,自引:0,他引:25  
本研究选用了三个马铃薯(Solanum Iuberosum L.)栽培品种“85T-14-3”、“86-2”及“Favorita”的块茎、微型薯和试管薯为起始材料,应用根癌农杆菌 Ti 质粒系统成功地建立了一种方法简单、速度快和频率高的遗传转化体系。其中试管薯薄片的转化速度最快,经根癌农杆菌(Agrobacterium tumefaciens)共培养后,薄片在100mg/L 卡那霉素的分化培养上,2—3周就可产生出抗性小芽,这些小芽进一步仲长后可在50—100mg/L 卡那霉素的无激素MS 培养基上生根。从共培养到转化植株的获得只需6—7周。微型薯和试管薯的转化频率较高,最高可达67.5%。大多数抗性植株均能检测到胭脂碱合成酶或 GUS 基因的表达。把带有甜蛋白基因和胭脂碱合成酶标记基因的Ti质粒导入马铃薯,获得大量转化植株。叶片抗性检测和 nopaline 检测可推断外源甜蛋白基因已进入马铃薯基因组。  相似文献   

12.
13.
14.
15.
b
An account is given of the importation and release in Australia of the hymenopterous parasites Aphidius sonchi Marshall and Praon volucre (Haliday) (Ichneumonoidea: Aphidiidae) as biological control agents of the sowthistle aphid, Hyperomyzus lactucae (L.), the vector of lettuce necrotic yellows virus, a serious disease of lettuce in Australia and New Zealand. The establishment of A. sonchi is documented.  相似文献   

16.
17.
Novozyme 435 could be a highly efficient catalyst in the asymmetric acylation of (R,S)-3-n-butylphthalide in tetrahydrofuran–hexane solvents. The effect of various reaction parameters such as agitation velocity, water content, mixed media, temperature, concentration of Novozyme 435, molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, reaction time, enantiomeric excess of substrate (eeS), enantiomeric excess of product (eeP), and enantioselective ratio (E) were studied. Tetrahydrofuran markedly improved (R,S)-3-n-butylphthalide conversion, enantiomeric excess of remaining 3-n-butylphthalide, and enantiomeric ratio. The optimum media were 50% (v/v) tetrahydrofuran and 50% (v/v) hexane. Other ideal reaction conditions were an agitation velocity of 150 rpm, 0.4% (v/v) water content, temperature of 30°C, 8 mg/mL dosage of Novozyme 435, 8:1 (0.4 mmol: 0.05 mmol) molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, and a reaction time of 48 hr. Under the optimum conditions, 96.4% eeS and 49.3% conversion of (R,S)-3-n-butylphthalide were achieved. In addition, enantiomeric excess of the product was above 98.0%.  相似文献   

18.
本文报道从新疆分离的一株大菜粉蝶(Pieris brassicae)颗粒体病毒(PbGV)包含体上结合有碱性蛋白酶.提取含酶的包含体蛋白,以酪蛋白为底物鉴定表明此酶在pH9.4有最大的酶活力,并定位于“包裹”在病毒粒子套膜外的包含体蛋白中.在高pH时分子皿为26,500的包含体蛋白被酶降解为19,500和15,600道尔顿的两个组分.Hg++、Cu++仅部分抑制酶活力,可被二异丙基氟磷酸(DFP)完全抑制.75℃以上加热处理可使酶失活,并大大降低病毒包含体的解离.推测此酶是影响PbGV对寄主感染率的因子之一.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号