首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membranes from pigmented strain of Staphyloccus aureus 209-P and its apigment mutant B-6 were isolated. The infrared spectra, the cytochrome content, and the activities of the dehydrogenases and oxidases of the membranes were studied. The apigment mutant membranes differed from those of the pigmented strain in all parameters studied. It is concluded that the carotenoid pigments affect the chemical composition and functional activity of the Staphylococcus membranes.  相似文献   

2.
3.
BACKGROUND: The structure of P4-P6, a 160 nucleotide domain of the self-splicing Tetrahymena thermophila intron, was solved previously. Mutants of the P4-P6 RNA that form a more stable tertiary structure in solution were recently isolated by successive rounds of in vitro selection and amplification. RESULTS: We show that a single-site mutant (Delta C209) possessing greater tertiary stability than wild-type P4-P6 also crystallizes much more rapidly and under a wider variety of conditions. The crystal structure provides a satisfying explanation for the increased stability of the mutant; the deletion of C209 allows the adjacent bulged adenine to enter the P4 helix and form an A-G base pair, presumably attenuating the conformational flexibility of the helix. The structure of another mutant (Delta A210) was also solved and supports this interpretation. The crystals of Delta C209 diffract to a higher resolution limit than those of wild-type RNA (2.25 A versus 2.8 A), allowing assignment of innersphere and outersphere coordination contacts for 27 magnesium ions. Structural analysis reveals an intricate solvent scaffold with a preponderance of ordered water molecules on the inside rather than the surface of the folded RNA domain. CONCLUSIONS: In vitro evolution facilitated the identification of a highly stable, structurally homogeneous mutant RNA that was readily crystallizable. Analysis of the structure suggests that improving RNA secondary structure can stabilize tertiary structure and perhaps promote crystallization. In addition, the higher resolution model provides new details of metal ion-RNA interactions and identifies a core of ordered water molecules that may be integral to RNA tertiary structure formation.  相似文献   

4.
Although uridine and adenosine are converted by membrane-associated nucleoside phosphorylases to ribose-1-phosphate (ribose-1-P) and the corresponding bases (uracil and adenine), only ribose -1-P is accumulated within Salmonella typhimurium LT2 membrane vesicles. In accordance with these observations, no uptake is observed when the vesicles are incubated with the bases or nucleosides labeled in their base moieties. The vesicles lack a transport system for ribos-1-P, since excess ribose-1-P does not inhibit the uptake of the ribose moiety of uridine. In addition, there is no exchange with preaccumulatedribose-1-P. Thus, uridine, rather than ribose-1-P, must serve as the initially transported substrate. The uptake of the ribose portion of uridine is coupled to electron transport, and the levels to which ribose-1-P are accumulated may be reduced by adding various bases to the reaction mixtures. The bases appear to inhibit the uridine phosphorylase reaction and/or cause an efflux of ribose-1-P from the vesicles. This loss of ribose-1-P reflects the accumulation of nucleosides in the external medium after being synthesized within the membranes. Synthesis of the nucleosides from intravesicular ribose-1-P and exogenous base proceeds even though the bases are not accumulated by the vesicles. Furthermore, ribose-1-P cannot significantly inhibit uridine phosphorylase activity unless the membranes are disrupted. These observations indicate that the membrane-associated nucleoside phosphorylases may have a transmembranal orientation with their base and ribose-1-P binding sites on opposite sides of the membranes. Such an asymmetric arrangement of these enzymes may facilitate the uptake of the ribosyl moiety of nucleosides by a group translocation mechanism. Thus, nucleosides may be cleaved during the membrane transport process, with the resultant bases delivered to the external environment while ribose-1-P is shunted to the intravesicular space.  相似文献   

5.
Zhou GP  Troy FA 《Glycobiology》2005,15(4):347-359
Earlier NMR studies showed that the polyisoprenols (PIs) dolichol (C95), dolichylphosphate (C95-P) and undecaprenylphosphate (C55-P) could alter membrane structure by inducing in the lamellar phospholipid (PL) bilayer a nonlamellar or hexagonal (Hex II) structure. The destabilizing effect of C95 and C95-P on host fatty acyl chains was supported by small angle X-ray diffraction and freeze-fracture electron microscopy. Our present 1H- and 31P-NMR studies show that the addition of a polyisoprenol recognition sequence (PIRS) peptide to nonlamellar membranes induced by the PIs can reverse the hexagonal structure phase back to a lamellar structure. This finding shows that the PI:PIRS docking complex can modulate the polymorphic phase transitions in PL membranes, a finding that may help us better understand how glycosyl carrier-linked sugar chains may traverse membranes. Using an energy-minimized molecular modeling approach, we also determined that the long axis of C95 in phosphatidylcholine (PC) membranes is oriented approximately parallel to the interface of the lipid bilayer, and that the head and tail groups are positioned near the bilayer interior. In contrast, the phosphate head group of C95-P is anchored at the PC bilayer, and the angle between the long axis of C95-P and the bilayer interface is about 758, giving rise to a preferred conformation more perpendicular to the plane of the bilayer. Molecular modeling calculations further revealed that up to five PIRS peptides can bind cooperatively to a single PI molecule, and this tethered structure has the potential to form a membrane channel. If such a channel were to exist in biological membranes, it could be of functional importance in glycoconjugate translocation, a finding that has not been previously reported.  相似文献   

6.
Dynamin and its related proteins are a group of mechanochemical proteins involved in the modulation of lipid membranes in various biological processes. Here we investigate the nature of membrane binding of the Arabidopsis dynamin-like 6 (ADL6) involved in vesicle trafficking from the trans-Golgi network to the central vacuole. Fractionation experiments by continuous sucrose gradients and gel filtration revealed that the majority of ADL6 is associated with membranes in vivo. Amino acid sequence analysis revealed that ADL6 has a putative pleckstrin homology (PH) domain. In vitro lipid binding assays demonstrated that ADL6 showed high affinity binding to phosphatidylinositol 3-phosphate (PtdIns-3-P) and that the PH domain was responsible for this interaction. However, the PH domain alone binds equally well to both PtdIns-3-P and phosphatidylinositol 4-phosphate (PtdIns-4-P). Interestingly, the high affinity binding of the PH domain to PtdIns-3-P was restored by a protein-protein interaction between the PH domain and the C-terminal region. In addition, deletion of the inserted regions within the PH domain results in high affinity binding of the PH domain to PtdIns-3-P. These results suggest that ADL6 binds specifically to PtdIns-3-P and that the lipid binding specificity is determined by the interaction between the PH domain and the C-terminal domain of ADL6.  相似文献   

7.
Protoplasting and regeneration promoted variation by the antibiotic production property in Streptomyces galbus (F) subsp. achromogenes 695 and its active variants 695-3-2 and 695-3-2-206. Variant 695-P24 with the potency 2 times higher than that of the initial strain 695 revertants was selected. No variants lacking the capacity for biosynthesis of the main components of antibiotic A-695 were detected among the revertants still, protoplasting of strains 695-3-2-206 and 695-P24 resulted in formation of variants synthesizing new components of the actinomycin complex.  相似文献   

8.
In this report, we have investigated whether alterations of the morphological and functional aspects of the biosecretory membrane system are associated with the metastatic potential of tumor cells. To this end, we have analyzed the morphology of the Golgi complex, the cytoskeleton organization and membrane trafficking steps of the secretory pathway in two human melanoma A375 cell line variants with low (A375-P) and high metastatic (A375-MM) potential. Immunofluorescence analysis showed that in A375-P cells, the Golgi complex showed a collapsed morphology. Conversely, in A375-MM cells, the Golgi complex presented a reticular and extended morphology. At the ultrastructural level, the Golgi complex of A375-P cells was fragmented and cisternae were swollen. When the cytoskeleton was analyzed, the microtubular network appeared normal in both cell variants, whereas actin stress fibers were largely absent in A375-P, but not in A375-MM cells. In addition, the F-actin content in A375-P cells was significantly lower than in A375-MM cells. These morphological differences in A375-P cells were accompanied by acceleration and an increase in the endoplasmic reticulum to Golgi and the trans-Golgi network to cell surface membrane transport, respectively. Our results indicate that in human A375 melanoma cells, metastatic potential correlates with a well-structured morphofunctional organization of the Golgi complex and actin cytoskeleton.  相似文献   

9.
Hexokinase I (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1), a key regulatory glycolytic enzyme in certain tissues, is known to be markedly inhibited under physiological conditions. The action of the primary inhibitory effector, glucose-6-P, is reversed by inorganic orthophosphate (Pi). A molecular model for inhibition and deinhibition of hexokinase was recently proposed [Ellison, W. R., Lueck, J. D., and Fromm, H. J. (1975) J. Biol. Chem.250, 1864–1871]. One of the central assumptions of this model is that glucose-6-P is a normal product inhibitor of hexokinase. It has long been suggested that glucose-6-P is an allosteric inhibitor of hexokinase, whereas other sugar-phosphate products such as mannose-6-P are normal product inhibitors. In this report we investigated the kinetic mechanism of hexokinase action with mannose as substrate and mannose-6-P as an inhibitor. The data obtained show that there are no qualitative differences between glucose and mannose as substrates and glucose-6-P and mannose-6-P as inhibitors. Binding experiments indicate that glucose-6-P and mannose-6-P are competitive binding ligands with hexokinase I. Furthermore, the activation pattern observed with Pi and glucose-6-P inhibited hexokinase is also found with the mannose-6-P inhibited phosphotransferase. These findings suggest that the mechanism of inhibition of glucose-6-P and mannose-6-P represents a difference in degree rather than a difference in kind. An explanation of the results in terms of a stereochemical model is presented.  相似文献   

10.
In our study we investigated hemispherical phospholipid bilayer membranes and phospholipid vesicles made from hexadecaprenyl monophosphate (C80-P), dioleoylphosphatidylocholine (DOPC) and their mixtures by voltammetric and transmission electron microscopy (TEM) techniques. The current-voltage characteristics, the membrane conductance-temperature relationships and the membrane breakdown voltage have been measured for different mixtures of C80-P/DOPC. The membrane hydrophobic thickness and the activation energy of ion migration across the membrane have been determined. Hexadecaprenyl monophosphate decreased in comparison with DOPC bilayers, the membrane conductance, increased the activation energy and the membrane breakdown voltage for the various value of C80-P/DOPC mole ratio, respectively. The TEM micrographs of C80-P, DOPC and C80-P/DOPC lipid vesicles showed several characteristic structures, which have been described. The data indicate that hexadecaprenyl monophosphate modulates the surface curvature of the membranes by the formation of aggregates in liquid-crystalline phospholipid membranes. We suggest that the dynamics and conformation of hexadecaprenyl monophosphate in membranes depend on the transmembrane electrical potential. The electron micrographs indicate that polyprenyl monophosphates with single isoprenyl chains form lipid vesicular bilayers. The thickness of the bilayer, evaluated from the micrographs, was 11 ± 1 nm. This property creates possibility of forming primitive bilayer lipid membranes by long single-chain polyprenyl phosphates in abiotic conditions. It can be the next step in understanding the origin of protocells. Received: 10 January 2000/Revised: 7 June 2000  相似文献   

11.
V L Shiriaeva 《Antibiotiki》1975,20(8):729-732
Staphylococcus aureus, a laboratory strain 209-P and strain I isolated freshly from infected wounds, as well as lincomycin hydrochloride, ampicillin, oxacillin and methicillin manufactured in the USSR and cephaloridin manufactured by "PLIVA" in Yugoslavia were used. Various activity levels of desoxyribonuclease and lecitinase of the staphylococci depending on sensitivity or resistance of the test-microbe to the antibiotics were shown. The activity of the above microbial enzymes characterizing the pathogenic properties decreased with development of the antibiotic resistance, sometimes to complete inactivation of the enzymes synthesized by the staphylococci. In spite of closeness of their modes of action the semisynthetic penicillins had a differentiating effect on the above enzymes.  相似文献   

12.
gp55-P is a dimeric membrane protein with a single transmembrane helix that is coded by the env gene of the polycythemic strain of the spleen focus forming virus. gp55-P activates the erythropoietin (Epo) receptor through specific transmembrane helix interactions, leading to Epo-independent growth of erythroid progenitors and eventually promoting erythroleukemia. We describe the use of magic angle spinning deuterium NMR to establish the structure of the transmembrane dimer of gp55-P in model membranes. Comparison of the deuterium lineshapes of leucines in the center (Leu(396-399)) and at the ends (Leu(385), Leu(407)) of the transmembrane sequence shows that gp55-P has a right-handed crossing angle with Leu(399) packed in the dimer interface. We discuss the implications of the structure of the gp55-P transmembrane dimer for activation of the Epo receptor.  相似文献   

13.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

14.
Aminasine, BeSO4 and Pt-5-sulfomercaptoquinolinate action on Ca-ATPase of SR showed a considerably less inhibiting effect as compared with that produced on the native membranes. The inhibiting action of the chemical compounds on those of native SR membranes is followed by the increase of mobility of hydrophobic segments of the membrane. The kinetic study of ATPase reaction at various temperatures showed on low-temperature transformation after the action by chemical compounds. Both structural transformations retain in the modified SR membrane independent of the chemical treatment. The activation energies considerably differ from those of native an modified membranes without chemical treatment (particularly in the region of 10-20 degrees). The data obtained allow to suggest that the inhibiting action of chemical compounds is followed by the changes in microviscosity (in the region of protein-lipid interaction of SR membrane, in particular), which by conformation transformations affect the configuration of the enzyme active center, alternating its geometry and catalytic activity.  相似文献   

15.
The effect of 2,3-diphosphoglycerate (2,3-P2-glycerate) on the phosphorylation of spectrin in solution by purified membrane cyclic AMP-independent protein kinase and in membrane preparations by the endogenous kinase was investigated. 2,3-P2-Glycerate inhibited spectrin phosphorylation both in solution and in the intact membrane. Kinetic analyses showed that 2,3-P2-glycerate had no effect on the Km for ATP but appeared to lower the Vmax of the reaction. When the effect of 2,3-P2-glycerate was examined in the presence of varying concentrations of spectrin, competitive inhibition kinetics were obtained. Interestingly, low concentrations of 2,3-P2-glycerate were found to effect the release of the membrane kinase from erythrocyte membranes. This release reaction may be related to the ability of 2,3-P2-glycerate to interfere with the interaction between the kinase and spectrin. The data suggest the possibility that the kinase may be bound to spectrin in the erythrocyte membrane. 2,3-P2-glycerate also caused the solubilization of 3-phosphoglyceraldehyde dehydrogenase, but not of cyclic AMP-dependent protein kinase. Taken together, our data indicate that 2,3-P2-glycerate may have a regulatory role in membrane protein phosphorylation and also may regulate the extent of association of the kinase with the membrane.  相似文献   

16.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740(+)-P740) and (F(A/B)(-)-F(A/B)) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740(+)A(1)(-)-P740A(1)) and ((3)P740-P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A(1)(-)), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450+/-10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000+/-4000 M(-1) cm(-1) at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1 : to approximately 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

17.
Mutation of aspartic acid 187 to asparagine (D187N) or tyrosine (D187Y) in domain 2 of the actin-modulating protein gelsolin causes the neurodegenerative disease familial amyloidosis of Finnish type (FAF). These mutations render plasma gelsolin susceptible to aberrant proteolysis by furin in the trans-Golgi network, the initial proteolytic event in the formation of 71 and 53 residue fragments that assemble into amyloid fibrils. Ca(2+) binding stabilizes wild-type domain 2 gelsolin against denaturation and proteolysis, but the FAF variants are unable to bind and be stabilized by Ca(2+). Though the chain of events initiating FAF has been elucidated recently, uncertainty remains about the mechanistic details that allow the FAF variants to be processed. To test the hypothesis that impaired Ca(2+) binding in the D187 variants, but not other factors specific to residue 187, increases susceptibility to aberrant proteolysis and subsequent amyloidogenesis, we designed the gelsolin variant E209Q to remove a different Ca(2+) ligand from the same Ca(2+) site that is affected in the FAF variants. Here, we show that E209Q domain 2 does not bind Ca(2+) and is not stabilized against denaturation or furin proteolysis, analogous to the behavior exhibited by the FAF variants. Transfection of full-length E209Q into COS cells results in secretion of both the full-length and furin-processed fragments, as observed with D187N and D187Y. Mutation of the furin consensus sequence in D187N and E209Q gelsolin prevents cleavage during secretion, indicating that inhibition of proprotein convertases (furin) represents a viable therapeutic approach for the treatment of FAF. Mutations that diminish domain 2 Ca(2+) binding allow furin access to an otherwise protected cleavage site, initiating the proteolytic cascade that leads to gelsolin amyloidogenesis and FAF.  相似文献   

18.
The specific action of serine proteinases on protein substrates is a hallmark of blood coagulation and numerous other physiological processes. Enzymic recognition of substrate sequences preceding the scissile bond is considered to contribute dominantly to specificity and function. We have investigated the contribution of active site docking by unique substrate residues preceding the scissile bond to the function of prothrombinase. Mutagenesis of the authentic P(1)-P(3) sequence in prethrombin 2/fragment 1.2 yielded substrate variants that could be converted to thrombin by prothrombinase. Proteolytic activation was also observed with a substrate variant containing the P(1)-P(3) sequence found in a coagulation zymogen not known to be activated by prothrombinase. Lower rates of activation of the variants derived from a decrease in maximum catalytic rate but not in substrate affinity. Replacement of the P(1) residue with Gln yielded an uncleavable derivative that retained the affinity of the wild type substrate for prothrombinase but did not engage the active site of the enzyme. Thus, active site docking of the substrate contributes to catalytic efficiency, but it is does not determine substrate affinity nor does it fully explain the specificity of prothrombinase. Therefore, extended interactions between prothrombinase and substrate regions removed from the cleavage site drive substrate affinity and enforce the substrate specificity of this enzyme complex.  相似文献   

19.
The influence of nucleotides and pyrophosphate on phospholipase C from rabbit thymocytes was investigated by using two different methods for the determination of phospholipase C activity. In a first approach the release of radiolabeled inositol phosphates from [3H]inositol-labeled membranes was examined. By a second type of experiment the cleavage of exogenously added radiolabeled phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) was measured. Using internally labeled membranes only guanosine 5'-O-(thiotriphosphate) exhibited a stimulatory effect on the phospholipase C suggesting the involvement of a G-protein. When exogenous [3H]PtdIns-4,5-P2 was used as substrate, cleavage of PtdIns-4,5-P2 was stimulated by all nucleotides investigated; in addition pyrophosphate showed a stimulatory effect. From these data we conclude that the increased cleavage of exogenous PtdIns-4,5-P2 induced by GTP analogues is not conclusive in terms of the involvement of a G-protein. Rather than induced by a G-protein this activation may be caused by an increased substrate accessibility. Our experiments with endogenous substrate clearly established the regulatory role of G-proteins for membrane-bound phospholipase C.  相似文献   

20.
Recent studies with viral oncogene tyrosine kinases have suggested that these kinases may phosphorylate phosphoinositides and diacylglycerol. Since the receptors for insulin and epidermal growth factor (EGF) also possess tyrosine kinase activity, we have investigated possible effects of insulin and EGF on phosphoinositide metabolism in rat liver plasma membranes and rat hepatocytes. In plasma membranes prepared from rats injected 18 h prior with [3H]myo-inositol or incubated with [gamma-32P]ATP, phosphatidylinositol-4-P and phosphatidylinositol-4,5-P2 were formed, but there were no effects of either insulin or EGF although these agents stimulated protein tyrosine phosphorylation. In hepatocytes incubated with [3H]myo-inositol, label was incorporated into phosphatidylinositol, phosphatidylinositol-4-P, and phosphatidylinositol-4,5-P2, but there was no effect of insulin. Incubation of hepatocytes with [3H]myo-inositol plus insulin or EGF for 2 h also did not alter the formation of [3H]myo-inositol-1,4,5-P3 from [3H]phosphatidylinositol-4,5-P2 induced by vasopressin. These findings suggest that the tyrosine kinase activity of liver insulin and EGF receptors is not important in phosphoinositide formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号