首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The calmodulin-stimulated ATPase of maize (Zea mays L.) coleoptiles has been purified by calcium-dependent binding to a calmodulin affinity column. In the presence of protease inhibitors (phenylmethylsulfonylfluoride and chymostatin) a polypeptide of relative molecular mass (Mr) 140000 (±10000) is obtained on sodium-dodecylsulphate polyacrylamide gels. This polypeptide is recognised specifically by an affinity-purified polyclonal antibody to mammalian calmodulin-stimulated calcium-pumping ATPases and is of similar Mr to the erythrocyte-membrane calcium pump (138000 Mr).Abbreviations EGTA ethylene glycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid - Mr apparent molecular mass - SDS sodium dodecyl sulphate  相似文献   

2.
When membrane vesicles from maize (Zea mays L.) coleoptiles are extracted at high buffer strength, a pH-driven, saturable association of [14C] indole-3-acetic acid is found, similar to the in-vitro auxin-transport system previously described for Cucurbita hypocotyls. The phytotropins naphthylphthalamic acid and pyrenoylbenzoic acid increase net uptake, pressumably by inhibiting the auxin-efflux carrier.Abbreviations IAA indole-3-acetic acid - ION3 ionophore mixture of carbonylcyanide-3-chlorophenylhydrazone, nigericin and valinomycin - 1-NAA, 2-NAA 1-, 2-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid  相似文献   

3.
Saturable and reversible in vitro binding of [14C]riboflavin was found to occur on subcellular, sedimentable particles from maize coleoptiles and Cucurbita hypocotyls. The KD was ca. 6 M, the pH optimum was near 6.0, and the number of binding sites amounted to 0.1–0.5 M on a fresh-weight basis. When the reducing agent dithionite was present, riboflavin binding increased-the KD was 2.5 M, and the pH optimum above 8.0. The binding was specific: flavin mononucleotide (FMN) and flavin adenosine-dinucleotide (FAD) bound less tightly to these sites than riboflavin and another major soluble flavin, the previously described riboflavin-analog FX, occurring in grass coleoptiles. These flavin-binding sites were localized on vesicles derived from plasmalemma and endoplasmic reticulum by analyzing sucrose and metrizamide density gradients and marker enzymes.Abbreviations CCO cytochrome-c oxidase - CCR NADH-cytochrome-c oxidoreductase - ER endoplasmic reticulum - FAD flavin-adenosinedinucleotide - FMN flavin mononucleotide - MOPS N-morpholino-3-propansulfonic acid - NADH reduced -nicotinamide dinucleotide - nKP n thousand times g pellet - NPA l-naphthylphthalamic acid - PM plasma membrane, plasmalemma - RBF riboflavin - IAA indoleacetic acid - BA benzoic acid  相似文献   

4.
Inner mesophyll cells from coleoptiles of Zea mays L. cv. Merit were fixed after varying periods of gravistimulation. A statistically significant amount (17–21%) of amyloplast sedimentation occurred in these cells after 30 s of gravistimulation. The presentation time is approx. 40 s or less. The accumulation of amyloplasts near the new lower wall shows a linear relationship to the logarithm of the gravistimulation time (r=0.92 or higher). The intercept of this line with the baseline value of amyloplasts in vertical coleoptiles indicates that the number of amyloplasts on the new lower wall begins increasing 11–15 s after the onset of gravistimulation. Direct observations of living cells confirm that many amyloplasts sediment within less than 15–30 s. These rapid kinetics are consistent with the classical statolith hypothesis of graviperception involving the sedimentation of amyloplasts to the vicinity of the new lower wall.  相似文献   

5.
M. Iino 《Planta》1987,171(1):110-126
Blue-light-induced phototropism of maize (Zea mays L.) coleoptiles was studied with a view to kinetic models. Red-light-grown plants were used to eliminate complication arising from the activation by blue light of phytochrome-mediated phototropism. In the first part, mathematical models were developed to explain the phototropic fluence-response data, which were obtained for the responses induced by a single unilateral pulse (30 s) and those induced by a unilateral pulse (30 s) given immediately after a bilateral pulse (30 s, fixed fluences). These data showed bell-shaped fluence-response curves, characteristic of first positive curvature. Modelling began with the assumptions that the light gradient plays a fundamental role in phototropism and that the magnitude of the response is determined by the gradient, or the concentration difference, in a photoproduct between the irradiated and the shaded sides of the tissue. Minimal mathematical models were then derived, by defining chemical kinetics of the photoreaction and introducing the minimum of parameters needed to correlate the incident fluencerate to the functional fluence-rates within the tissue, the functional fluence-rate to the rate constant of the photoreaction, and the photoproduct concentration difference to the curvature response. The models were tested using a curve-fitting computer program. The model obtained by assigning first-order kinetics to the photoreaction failed to explain the fluence-response data, whereas application of second-order kinetics led to a successful fit of the model to the data. In the second part, temporal aspects of the photosystem were examined. Experimental results showed that a high-fluence bilateral pulse eliminated the bell-shaped fluence-response curve for an immediate unilateral pulse, and that the curve gradually reappeared as the time for unilateral stimulation elapsed after the bilateral pulse. The model based on a second-order photoreaction could be extended to explain the results, with assumed changes in two components: the concentration of the reactant for the photoproduct, and the light-sensitivity of the reaction. The reactant concentration, computed with the curvefitting program, showed a gradual increase from zero to a saturation level. This increase was then modelled in terms of regeneration of the reactant from the photoproduct, with an estimated first-order rate constant of about 0.001·s-1. The computed value for the constant reflecting the light-sensitivity showed a sharp decline after the high-fluence pulse, followed by a gradual return to the initial level. From these analytical results, the appearance of second positive curvature was predicted.Abbreviations FPC first positive curvature - SPC second positive curvature CIW-DPB publication No. 884  相似文献   

6.
M. M. Moloney  P. E. Pilet 《Planta》1981,153(5):447-452
Auxin binding onto membrane fractions of primary roots of maize seedlings has been demonstrated using naphth-1yl-acetic acid (NAA) and indol-3yl-acetic acid (IAA) as ligands. This binding is compared with the already well characterized interaction between auxins and coleoptile membranes. The results indicate that while kinetic parameters are of the same order for root and coleoptile binding, a number of differences occur with respect to location in cells and relative affinity. The possible significance of the existence of such binding sites in root cells is discussed in relation to auxin action.Abbreviations 4-Cl-PA 4-chlorophenoxyacetic acid - EDTA ethylene diamine tetracetic acid - IAA indol-3yl-acetic acid - MCPA 2-methyl-4-chlorophenoxyacetic acid - NAA naphth-1yl-acetic acid - 2-NAA naphth-2yl-acetic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3 diol - TIBA 2,3,5 triiodobenzoic acid - NPA naphthylphthalamic acid - PCIB 4-chlorophenoxyisobutyric acid - PCPP 4-chlorophenoxyisopropionic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

7.
P. Kunzelmann  M. Iino  E. Schäfer 《Planta》1988,176(2):212-220
The lateral fluence-rate gradients in unilaterally irradiated maize (Zea mays L.) coleoptiles were calculated on the basis of the proportions of P fr (far-red-absorbing form of phytochrome) measured spectroscopically in transverse slices of the coleoptiles (top 1 cm). The results showed the occurrence of significant gradients that are wavelength-dependent. The gradient at 449 nm was steeper than those measured at 516, 534 and 551 nm, which were steeper than that measured at 665 nm. The ratios between the sides proximal and distal to the light source were, for example, 1:0.12 (449 nm), 1:0.23 (534 nm), and 1:0.28 (665 nm). Fluence-response curves for coleoptile phototropism (first positive curvature produced by less than 100 s unilateral irradiation) were measured at 449, 516, 534 and 551 nm. Comparison of the threshold fluences indicated that the responsiveness to 551 nm is about 104.8 less than that to 449 nm. Increasing wavelengths led to a decrease in maximal curvature, which correlated with the decrease of the fluence-rate ratios between the proximal and distal sides. Phototropic fluence-response curves were also measured using bilateral irradiation (449 nm). In one set of experiments, the fluence ratio was kept constant (either 1:1/2, 1:1/4 or 1:1/16) and the total fluence was varied, and in the other set the fluence applied to one side was kept constant and the fluence ratio was varied. A simple model based on the assumption that only one photoreaction occurs, and that the response is a function of the difference between the proximal and distal sides in the local photoreceptor action was tested. A fluence-response curve for this local photoreceptor action was calculated based on the fluence-rate ratio and the phototropic fluence-response curve measured for 449 nm. This curve was used, in conjunction with the measured fluence-rate ratios, as a basis for calculating phototropic fluence-response curves for other wavelengths and those for 449 nm obtained with bilateral irradiation. The calculated fluence-response curves showed excellent agreement with the experimental data. It is concluded that the threshold for maize coleoptile phototropism reflects the apparent photoconversion cross-section of the blue-light receptor whereas the maximal curvature depends on the steepness of the light gradient across the coleoptile.Abbreviations and symbols I(x) fluence rate at the depth x - P fr phytochrome (far-red absorbing) - P r phytochrome (red absorbing) - P tot total phytochrome (P r+P fr) - photoconversion cross-section  相似文献   

8.
Protoplasts were isolated from cortical cells of the elongating zone of maize (Zea mays L. cv. LG 11) roots and submitted to microelectrophoresis. Significant and transient differences in zeta potential between protoplasts from upper and lower root sides were compared with the gravireaction and the differential elongation of these roots. The maximum difference in the zeta potential was obtained between protoplasts from the upper and lower cortical cells after 90 min, exactly the time of gravipresentation for which the maximum rate of gravireaction was observed. In addition, this almost corresponded to the time for which the difference between the elongation rates of upper and lower sides of the extending zone began to increase. Consequently, the changes in the charges of the plasmalemma of the cortical cells from the growing part of roots could be more or less directly related to the root graviresponse.  相似文献   

9.
Microsomal membrane vesicles and purified plasma membranevesicles obtained from coleoptiles of maize (Zea mays L.) weresubjected to pH shifts from pH 7.8 to 4.7. In the presence of ATPaseinhibitors such as vanadate, net accumulation of radiolabelled butyricand indole-3-acetic acid (IAA) remained higher than in controls. When 2min after the pH shift, at 4°C, the microsomal vesicles weredenatured the amount of ATP could be determined using theluciferin/luciferase assay. Significantly increased ATP production overcontrol values – no pH-shift or ionophore treatment – wasfound. Therefore, such vesicles might produce ATP for in vitrotransport processes such as auxin efflux.  相似文献   

10.
Two types of auxin-binding sites (sites I and II) in membranes from maize (Zea mays L.) coleoptiles were characterized. Site I was a protein with a relative molecular mass of 21 000, and the distribution of site I protein on sucrose density gradient fractionation coincided with that of NADH-cytochrome-c reductase (EC 1.6.99.3), a marker enzyme of the endoplasmic reticulum. Immunoprecipitation and immunoblotting studies showed that the content of site I protein in maize coleoptiles was approx. 2 g·(g FW)-1. Site II occurred in higher-density fractions and also differed immunologically from site I. Site I was present at the early developmental stage of the coleoptile and increased only twice during coleoptile growth between day 2 and 4. Site II activity was low at the early stage and increased more substantially between day 3 and 4, a period of rapid growth of the coleoptile. Both sites decreased concurrently after day 4, followed by a reduction in the growth rate of the coleoptile. Coleoptiles with the outer epidermis removed showed a lower site I activity than intact coleoptiles, indicating that site I was concentrated in the outer epidermis. Site II, in contrast, remained constant after removal of the outer epidermis. The results indicate that site I is not a precursor of site II and that the two sites are involved in different cellular functions.Abbreviations FW fresh weight - M r relative molecular mass - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

11.
F. D. Sack  A. C. Leopold 《Planta》1985,164(1):56-62
Living maize (Zea mays L.) coleoptile cells were observed using a horizontal microscope to determine the interaction between cytoplasmic streaming and gravity-induced amyloplast sedimentation. Sedimentation is heavily influenced by streaming which may (1) hasten or slow the velocity of amyloplast movement and (2) displace the plastid laterally or even upwards before or after sedimentation. Amyloplasts may move through transvacuolar strands or through the peripheral cytoplasm which may be divided into fine cytoplasmic strands of much smaller diameter than the plastids. The results indicate that streaming may contribute to the dynamics of graviperception by influencing amyloplast movement.  相似文献   

12.
A. Hager  M. Brich 《Planta》1993,189(4):567-576
Tips of maize coleoptiles, which function as esential light sensors for the phototropic growth reaction, exhibit a rapid blue-light-induced phosphorylation of a plasma-membrane-associated 100-kDa protein. Characteristics of this reaction are as follows: (i) The functional unit involved in the light-dependent phosphorylation consists of a photoreceptor, a protein kinase and the 100-kDa protein. This complex is only localized in the plasma membrane of tips but not in other parts of the seedling, (ii) The photoreceptor is a cryptochrome-like compound, (iii) The pH optimum of the light-dependent phosphorylation on isolated plasma membranes is around pH 7.8 whereas the light-independent phosphorylation of other membrane proteins occurs at lower values (pH 6.2). (iv) The light-induced in-vitro phosphorylation of the 100-kDa protein is strongly inhibited by the protein-kinase inhibitor staurosporine (IC50=4 nM). (v) The 32P-moiety of a 32P-[100 kDa]-protein complex generated after a light pulse with the aid of a membrane-associated protein kinase in the presence of [γ-32P]ATP cannot be removed by a 100-fold higher level of (unlabelled) ATP. This fact indicates that protein and phosphate are covalently connected and that the complex is not a short-lived intermediate. (vi) The 100-kDa protein is not identical to the plasma-membrane H+-ATPase, as shown by immunostaining on Western blots. (vii) Irradiation-dependent in vivo phosphorylation of the 100-kDa protein in tips is already saturated by a light pulse of 5 s. In contrast, the de-phosphorylation of the protein in the dark is a slow reaction lasting about 30 min. It is suggested that the blue-light-triggered phosphorylated status of the 100-kDa protein is an early step in phototropism of the coleoptile, affecting the transport of auxin primarily in the irradiated flank.  相似文献   

13.
Moritoshi Iino 《Planta》1988,176(2):183-188
The effects of pretreatments with red and blue light (RL, BL) on the fluence-response curve for the phototropism induced by a BL pulse (first positive curvature) were investigated with darkadapted maize (Zea mays L.) coleoptiles. A pulse of RL, giving a fluence sufficient to saturate phytochrome-mediated responses in this material, shifted the bell-shaped phototropic fluence-response curve to higher fluences and increased its peak height. A pulse of high-fluence BL given immediately prior to this RL treatment temporarily suppressed the phototropic fluence-response curve, and shifted the curve to higher fluences than induced by RL alone. The shift by BL progressed rapidly compared to that by RL. The results indicate (1) that first positive curvature is desensitized by both phytochrome and a BL system, (2) that desensitization by BL occurs with respect to both the maximal response and the quantum efficiency, and (3) that the desensitization responses mediated by phytochrome and the BL system can be induced simultaneously but develop following different kinetics. It is suggested that theses desensitization responses contribute to the induction of second positive curvature, a response induced by prolonged irradiation.Abbreviations BL blue light - RL red light CIW-DPB Publication No. 1001  相似文献   

14.
Robert E. Cleland 《Planta》1991,186(1):75-80
A controversy exists as to whether or not the outer epidermis in coleoptiles is a unique target for auxin in elongation growth. The following evidence indicates that the outer epidermis is not the only auxin-responsive cell layer in either Avena sativa L. or Zea mays L. coleoptiles. Coleoptile sections from which the epidermis has been removed by peeling elongate in response to auxin. The magnitude of the response is similar to that of intact sections provided the incubation solution contains both auxin and sucrose. The amount of elongation is independent of the amount of epidermis removed. Sections of oat coleoptiles from which the epidermis has been removed from one side are nearly straight after 22 h in auxin and sucrose, despite extensive growth of the sections. These data indicate that the outer epidermis is not a unique target for auxin in elongation growth, at least in Avena and maize coleoptiles.Abbreviations IAA indole-3-acetic acid - PCIB p-chlorophenoxyiso-butyric This research was supported by grants from the National Aeronautics and Space Administration and from the U.S. Department of Energy. The help of S. Ann Dreyer is gratefully acknowledged.  相似文献   

15.
Nick P  Sailer H  Schafer E 《Planta》1990,181(3):385-392
The interaction of photo- and gravitropic stimulation was studied by analysing the curvature of maize (Zea mays L.) coleoptiles subjected to rotation on horizontal clinostats. Gravitropic curvature in different directions with respect to the stimulation plane was found to be transient. This instability was caused by an increasing deviation of response direction from the stimulation plane towards the caryopsis. The bending angle as such, however, increased steadily. This reorientation of the gravitropic response towards the caryopsis is thought to be caused by the clinostat-elicited nastic curvature found in maize coleoptiles. In contrast, the response to phototropic stimulation was stable, in both, orientation and curving. Although stimulation by gravity was not capable of inducing a stable tropistic response, it could inhibit the response to opposing phototropic stimulation, if the counterstimulation was given more than 90 min after the onset of gravistimulation. For shorter time intervals the influence of the phototropic stimulus obscured the response to the first, gravitropic stimulation. For time intervals exceeding 90 min, however, the phototropic effects disappeared and the response was identical to that for gravity stimulation alone. This gravity-induced inhibition of the phototropic response was confined to the plane of gravity stimulation, because a phototropic stimulation in the perpendicular direction remained unaffected, irrespective of the time interval between the stimulations. This concerned not only the stable phototropic curving, but also the capacity of the phototropic induction to elicit a stable directional memory as described earlier (P. Nick and F. Schäfer, 1988b, Planta 175, 380–388). This was tested by a second bluelight pulse opposing the first. It is suggested that gravity, too, can induce a directional memory differing from the blue-light elicited memory. The mechanisms mediating gravi- and phototropic directional memories are thought to branch off the respective tropistic signal chains at a stage where photo- and gravitropic transduction are still separate.This work was supported by the Deutsche Forschungsgemeinschaft and a grant of the Studienstiftung des Deutschen Volkes to P. Nick.  相似文献   

16.
P. Schopfer 《Planta》1996,199(1):43-49
It has recently been proposed that H2O2-dependent peroxidative formation of phenolic cross-links between cell-wall polymers serves as a mechanism for fixing the viscoelastically extended wall structure and thus confers irreversibility to wall extension during cell growth (M. Hohl et al. 1995, Physiol. Plant. 94: 491–498). In the present paper the isolated cell wall (operationally, frozen/thawed maize coleoptile segments) was used as an experimental system to investigate H2O2-dependent cell-wall stiffening in vitro. Hydrogen peroxide inhibited elongation growth (in vivo) and decreased cell-wall extensibility (in vitro) in the concentration range of 10–10000 mol·1–1. In rheological measurements with a constant-load extensiometer the stiffening effect of H2O2 could be observed with both relaxed and stressed cell walls. In-vitro cell-wall stiffening was a time-dependent reaction that lasted about 60 min in the presence of saturating concentrations of H2O2. The presence of peroxidase in the growth-limiting outer epidermal wall of the coleoptile was shown by histochemical assays. Peroxidase inhibitors (azide, ascorbate) suppressed the wall-stiffening reaction by H2O2 in vitro. Hydrogen peroxide induced the accumulation of a fluorescent, insoluble material in the cell walls of living coleoptile segments. These results demonstrate that primary cell walls of a growing plant organ contain all ingredients for the mechanical fortification of the wall structure by H2O2-inducible phenolic cross-linking.Supported by Deutsche Forschungsgemeinschaft. I thank Ms. Bärbel Huvermann for expert technical assistance.  相似文献   

17.
P. E. Pilet  D. Ney 《Planta》1981,151(2):146-150
The growth rate of the two sides of 10-mm apical segments prepared from primary roots and of intact primary roots of maize has been analyzed in both vertical and horizontal positions, using a filming method allowing continuous growth recording. The data showed that the georeaction began by a decrease in the overall elongation rate of the roots. This inhibition is effective on the lower side of the bending zone, where the growth is practically stopped during the period of maximum rate of geocurvature. In contrast, the growth is slightly enhanced on the upper part of the elongating zone.  相似文献   

18.
The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 m diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5–5.0 is too low to be compatible with a second messenger function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.Abbreviations and symbols E el, E pl elastic and plastic in-vitro cell-wall extensibility, respectively - E tot E el+E pl - FC fusicoccin - IAA indole-3-acetic acid - IT inner tissue - ITW inner-tissue walls - OEW outer epidermal wall - osmotic pressure - P wall pressure - water potential  相似文献   

19.
Nick P  Schafer E 《Planta》1989,179(1):123-131
Rotation of unstimulated maize (Zea mays L.) seedlings on a horizontal clinostat is accompanied by a strong bending response of the coleoptiles towards the caryopsis, yielding curvatures exceding 100°. The corresponding azimuthal distribution shows two peaks, each of which is displayed by 30° from the symmetry axis connecting the shortest coleoptile and caryopsis cross sections. It is argued that this spatial pattern is not the result of two independent bending preferences, but caused by a one-peaked distribution encountering an obstacle in its central part and thus being split into the two subpeaks. The existence of one preferential direction justifies considering this response to be a nastic movement. Its time course consists of an early negative phase (coleoptiles bend away from the caryopsis) followed 2 h later by a longlasting positive bending towards the caryopsis. In light-interaction experiments, fluence-response curves for different angles between blue light and the direction of the nastic response were measured. These experiments indicate that blue light interacts with the nastic response at two levels: (i) phototonic inhibition, and (ii) addition of nastic and phototropic curvatures. It is concluded that phototropic and phototonic transduction bifurcate before the formation of phototropic transverse polarity. The additivity of nastic and phototropic responses was followed at the population level. At the level of the individual seedling, one observes, in the case of phototropic induction opposing nastic movement, three distinct responses: either strong phototropism, or nastic bending, or an avoidance response which involves strong curvature perpendicular to the stimulation plane. With time the nastic bending becomes increasingly stable against opposing phototropic stimulation. This can be seen from a growing proportion of seedlings exhibiting nastic bending when light is applied at variable intervals after the onset of clinostat rotation. At the transition from instability to stability, this type of experiment produces a high percentage of seedlings displaying the avoidance response. However, no cancelling resulting in zero curvature can be observed. It is concluded that the endogenous polarity underlying the nastic response is different in its very nature from the blue-light-elicited stable transverse polarity described earlier (Nick and Schäfer 1988 b).Abbreviation BL blue light (449 nm)  相似文献   

20.
Mary Jo Vesper  Carol L. Kuss 《Planta》1990,182(4):486-491
To locate functionally the primary site of auxin action in growing cells, the pool of auxin relevant to induction of growth in maize (Zea mays L.) coleoptile sections was determined. A positive correlation was consistently noted between growth and intracellular levels of indole-3-acetic acid (IAA), i.e. growth appears to be relatively independent of the external level of IAA. N-1-Naphthylphthalamic acid (NPA), a potent inhibitor of auxin transport, was used to enhance accumulation of IAA in coleoptile cells. From the use of NPA, it is shown that: 1) increasing the accumulation of IAA in cells, while the external concentration is held constant, resulted in a concomitant increase in growth, and 2) blocking the exit of IAA from cells with NPA sustained an IAA-induced growth response in the absence of externally applied IAA. Furthermore, the absence of any alterations in auxin binding to microsomal fractions by NPA indicates that the action of NPA in causing enhancement of auxin-induced growth is based upon its inhibition of efflux of IAA from the cells. This research was supported by National Science Foundation grant No. DMB 8515925. The careful assistance of Laurie Brulport is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号