首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial Degradation of EDTA   总被引:1,自引:0,他引:1  
Degradation of EDTA (ethylenediaminetetraacetic acid) or metal–EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal–EDTA complexes (Me–EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 1016 (log K < 16), such as Mg–EDTA, Ca–EDTA, and Mn–EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5–10 h of incubation. Me–EDTA complexes with log K above 16 (Zn–EDTA, Co–EDTA, Pb–EDTA, and Cu–EDTA) were not completely degraded during a 24-h incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd–EDTA or Fe(III)–EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.  相似文献   

2.
The biological reduction of Fe(III) ethylenediaminetetraacetic acid (EDTA) is a key step for NO removal in a chemical absorption–biological reduction integrated process. Since typical flue gas contain oxygen, NO2 and NO3 would be present in the absorption solution after NO absorption. In this paper, the interaction of NO2 , NO3 , and Fe(III)EDTA reduction was investigated. The experimental results indicate that the Fe(III)EDTA reduction rate decrease with the increase of NO2 or NO3 addition. In the presence of 10 mM NO2 or NO3 , the average reduction rate of Fe(III)EDTA during the first 6-h reaction was 0.076 and 0.17 mM h−1, respectively, compared with 1.07 mM h−1 in the absence of NO2 and NO3 . Fe(III)EDTA and either NO2 or NO3 reduction occurred simultaneously. Interestingly, the reduction rate of NO2 or NO3 was enhanced in presence of Fe(III)EDTA. The inhibition patterns observed during the effect of NO2 and NO3 on the Fe(III)EDTA reduction experiments suggest that Escherichia coli can utilize NO2 , NO3 , and Fe(III)EDTA as terminal electron acceptors.  相似文献   

3.
The form in which a micronutrient is found in the rhizosphere affects its availability to plants. We compared the availability to barley of the free hydrated cation form of Fe3+, Cu2+, Zn2+, and Mn2+ versus their total metal concentrations (free ion plus complexes) in chelator-buffered solutions. Free metal ion activities were estimated using the chemical equilibrium program GEOCHEM-PC with the corrected database. In experiment 1, barley was grown in nutrient solutions with different Fe3+ activities using chelators to control Fe levels. Chlorosis occurred at Fe3+ activities of 10–18 and 10–19 M for barley grown in HEDTA and EDTA solutions, respectively. In experiment 2, barley was grown in nutrient solutions with the same calculated Fe3+ activity and the same chelator, but different total Fe concentrations. Leaf, root and shoot Fe concentrations were higher from CDTA buffered solutions which had the higher total Fe concentration indicating the importance of the total Fe concentration on Fe uptake. Results from treatments using EDTA or HEDTA, with one exception, were similar to the results from the CDTA treatment. This suggests differences in critical Fe3+ activities found in experiment 1 were due to differences in the total Fe concentration and not errors in chelate formation constants used to estimate the critical activities. Results for Cu, Zn, and Mn were similar to Fe; despite solutions with equal free Cu2+, Zn2+ and Mn2+ activities, plant concentrations of these metals were generally greater when grown in the solutions with the greater total amount of Cu, Zn, or Mn. When the free Zn2+ activity was kept constant while the total amount of Zn was increased from 4.4 to 49 M, leaf Zn concentration increased from 77 to 146 g g-1. In order to predict metal availability to barley and other species in chelator-buffered nutrient solutions, both free and total metal concentrations in solution must be considered. The critical Fe3+ activities required by barley in this study are much higher than those from tomato and soybean, 10-28 M, which strongly supports the Strategy 2 model of Fe uptake for Poaceae. This is related to the importance of the Fe3+ (barley) and the Fe2+ (tomato and soybean) ions in Fe uptake. Fe-stressed barley is known to release phytosiderophores which compete for Fe3+ in the nutrient solution, while tomato and soybean reduce Fe3+ to Fe2+ at the epidermal cell membranes to allow uptake of Fe2+ from Fe3+ chelates in solution.Abbreviations CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetracetic acid - DTPA diethylenetriaminepentacetic acid - EDTA ethylenediaminetetracetic acid - EDDHA ethylenediamine-di(o-hydroxyphenylacetic acid) - HBED-N,N di(2-hydroxybenzoyl)-ethylenediamine-N,N-diacetic acid - HEDTA-N hydroxyethylenediaminetriacetic acid - MES-2 (N-morpholino)ethanesulfonic acid - NTA nitrilotriacetic acid  相似文献   

4.
The effect of ethylenediaminetetraacetate (EDTA) on the mitogen response of porcine lymphocytes and the role of metal ions in reversal of the inhibitory effect of EDTA were determined. Porcine lymphocyte responses to mitogens were totally suppressed when serum used to supplement Ca2+, Mg2+-free minimum essential medium (MEM) was dialyzed against saline or saline with 0.2 or 0.60 mM EDTA, but the responses were only partially reduced when the same serum was added to RPMI-1640 medium. The inhibition observed in MEM could be reversed by adding 1×10−3 M Ca2+ and 1×10−3 M Mg2+ to the dialyzed serum. Serum treated directly with 0.60 mM EDTA completely suppressed blastogenesis in lymphocyte cultures maintained in RPMI-1640 or Ca2+, Mg2+ free MEM. The inhibitory effect of EDTA-treated serum could be completely reversed by adding Zn2+ or a combination of Zn2+ with other cationic ions, or partially reversed by adding Ni2+ or Fe3+. Zn2+ was the most effective ion, in that it was the only ion that, when alone added to the serum, could completely restore lymphocyte responses to phytohemagglutinin (PHA) or pokeweed mitogen (PWM).  相似文献   

5.
The mechanism of adaptation to Fe-deficiency stress was investigated in the unicellular green alga, Chlamydomonas reinhardtii. Upon removal of nutritional Fe, the activity of a cell surface Fe(III)-chelate reductase was increased by at least 15-fold within 24 h. This increase was negatively corelated with the Fe concentration in the growth media. Incubation of cells in the presence of the Fe2+-specific chelator, bathophenanthrolinedisulphonic acid, led to an increased Fe3+ reductase activity, even when sufficient Fe was present. Growth of cells in Cu-free media for 48 h led to no statistically significant increase in Fe3+ reductase activity. The Fe(III)-chelate reductase activity in Fe-starved cells was saturable with an apparent Km of 31 M and was inhibited by uncouplers of the transmembrane proton gradient but not by SH-specific reagents.Fe uptake was only observed in Fe-deficient cells. Uptake was specific for Fe in that at 100-fold excess of a number of metal ions in the transport assay did not inhibit uptake activity. However, a 100-fold excess of Cu resulted in a 87% inhibition of Fe uptake. The Vmax for Fe3+ reduction activity was 250-fold greater than for Fe uptake; although the Km values for both processes differed by only 10-fold. Thus, the rate limiting step in Fe assimilation was transport and not reduction. These results indicate that Fe assimilation in C. reinhardtii involves a reductive step and thus resembles the mechanism of Fe uptake in Strategy I higher plants.Keywords: Ferric chelate reduction, iron assimilation, iron uptake, unicellular green algae, Chlamydomonas.   相似文献   

6.
The Fe chelate o,p-EDDHA/Fe3+, in addition to o,o-EDDHA/Fe3+, was found recently to be a component of commercial EDDHA/Fe3+ chelates. The European Regulation on fertilisers has included o,p-EDDHA as an authorized chelating agent. The efficacy of o,o-EDDHA/Fe3+, o,p-EDDHA/Fe3+ and EDTA/Fe3+ chelates as Fe sources in plant nutrition was studied. Iron-chelate reductase (FC-R) in young cucumber plants (Cucumis sativus L.) roots reduced o,p-EDDHA/Fe3+ faster than o,o-EDDHA/Fe3+, EDTA/Fe3+ and a commercial source of EDDHA/Fe3+. The o,p-EDDHA/Fe3+ chelate was also more effective than the o,o-EDDHA/Fe3+ in decreasing the severity of Fe-deficiency chlorosis in leaves of young soybean (Glycine max L.) plants grown hydroponically. The o,p-EDDHA ligand was more effective in the short-term than the EDTA and o,o-EDDHA ligands at dissolving Fe from selected Fe minerals and soils. However, the ultimate quantity of dissolve Fe was greatest with the o,o-EDDHA ligand.  相似文献   

7.
After growing barley (Hordeum vulgare L.) in nutrient solutionscontaining EDTA, uptake of the nutrient metals was determinedat three harvests and concentrations of the various chemicalspecies of each metal in the growth solutions was modelled bycomputer simulation. Complexation with EDTA had different effectson the uptake of the ions Fe3+, Mn2+, Cu2+, and Zn2+. At thehighest EDTA level (EDTA/Fe=2/l) the plants were chlorotic andgrowth was inhibited. This is attributed to a deficiency inZn rather than in Fe. The critical level of free Zn2+ requiredin nutrient solutions for healthy growth was found to be approximately10–1010–10 mol dm–3, which is consistent withthat found by earlier workers for other plant species. Barleytolerated much lower levels of the free ions of copper and ironwithout exhibiting any obvious adverse effects. Key words: EDTA, micronutrients, trace metals, computer simulation, deficiencies, absorption, iron, manganese, copper, zinc  相似文献   

8.
A new hypothesis describing the role of the redox inactive Ca2+ ion in the expression of physiological oxidative damage is described. The hypothesis is based on the optimization of the chelation characteristics of iron complexes for pro-oxidant activity. In a previous investigation it was found that an excess of ligand kinetically hindered the Fenton reaction activity of the FeII/IIIEDTA complex (Bobier et al. 2003). EDTA, citrate, NTA, and glutamate were selected as models for the coordination sites likely encountered by mobile iron, i.e. proteins. The optimal [EDTA]:[FeIII] ratio for Fenton reaction activity as measured by electrocatalytic voltammetry in a solution was found to be 1:1. An excess of EDTA in the amount of 10:1 [ligand]:[metal] suppresses the Fenton reaction activity to nearly the control. It is expected that the physiological coordination characteristics of mobile Fe would have a very large excess of [ligand]:[metal] and thus not be optimized for the Fenton reaction. Introduction of Ca2+ in to a ratio of 10:10:1 [Ca2+]:[EDTA]:[FeIII] to the system reinvigorated the Fenton reaction activity to nearly the value of the optimal 1:1 [EDTA]:[FeIII] complex. The pH distribution diagrams of Ca2+ in the presence of EDTA and FeII/III indicate that Ca2+ has the ability to uptake excess EDTA without displacing either FeII of FeIII from their respective complexed forms. The similarity in the presence for hard ligand sites albeit with a lower binding constant for Ca2+ accounts for this action.  相似文献   

9.
Levels of Mg2+, Ca2+ and Fe2+/Fe3+ were determined in roots and shoots of sugar beet seedlings (Beta vulgaris L. cv. Monohill) cultured for 5 weeks in a complete nutrient solution to which either Cd2+ (0, 5 or 50 μM), EDTA (0, 10 or 100 μM) or a combination of both was added. The plants subjected to the various treatments showed a variety of deficiency symptoms. Leaves of the Cd2+-treated plants became thin and chlorotic (Mg- and Fe-deficiency symptoms). The plants showed reduced growth and developed only a few brownish roots with short laterals (Ca-deficiency symptoms). EDTA treatment resulted in green, stunted, hard leaves and reduced growth (Ca-deficiency symptoms). The deficiency symptoms observed correspond well with the observed uptake rates and distributions of Mg2+, Ca2+ and Fe2+/Fe3+. Increases in either Cd2+, EDTA or a combination of both in the growth medium, were correlated with increasing Mg2+ levels in the roots and with decreasing Mg2+ levels in the shoots. Cd2+ alone or in combination with EDTA had little influence on Ca2+ levels in the shoots but decreased Ca2+ levels in the roots. Thus, Cd2+ affects Mg2+ and Ca2+ transport in opposite ways: Mg2+ transport to the shoots is inhibited while that of Ca2+ is facilitated. Treatment with EDTA alone did not affect Ca2+ concentrations in either the shoots or the roots. Treatment with Cd2+ lowered Fe2+ concentrations in both roots and shoots.  相似文献   

10.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

11.
Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin (Tf) was investigated at various physiological iron to Tf concentration ratios. Loading percentages for these metal ions are based on a two M n+ to one Tf (i.e., 100% loading) stoichiometry and were determined using a particle beam/hollow cathode–optical emission spectroscopy (PB/HC-OES) method. Serum iron concentrations typically found in normal, iron-deficient, iron-deficient from chronic disease, iron-deficient from inflammation, and iron-overload conditions were used to determine the effects of iron concentration on iron loading into Tf. The PB/HC-OES method allows the monitoring of metal ions in competition with Fe3+ for Tf binding. Iron-overload concentrations impeded the ability of chromium (15.0 μM) or nickel (10.3 μM) to load completely into Tf. Low Fe3+ uptake by Tf under iron-deficient or chronic disease iron concentrations limited Ni2+ loading into Tf. Competitive binding kinetic studies were performed with Fe3+, Cr3+, and Ni2+ to determine percentages of metal ion uptake into Tf as a function of time. The initial rates of Fe3+ loading increased in the presence of nickel or chromium, with maximal Fe3+ loading into Tf in all cases reaching approximately 24%. Addition of Cr3+ to 50% preloaded Fe3+–Tf showed that excess chromium (15.0 μM) displaced roughly 13% of Fe3+ from Tf, resulting in 7.6 ± 1.3% Cr3+ loading of Tf. The PB/HC-OES method provides the ability to monitor multiple metal ions competing for Tf binding and will help to understand metal competition for Tf binding.  相似文献   

12.
The aim of this work was to clarify the role of S supply in the development of the response to Fe depletion in Strategy I plants. In S-sufficient plants, Fe-deficiency caused an increase in the Fe(III)-chelate reductase activity, 59Fe uptake rate and ethylene production at root level. This response was associated with increased expression of LeFRO1 [Fe(III)-chelate reductase] and LeIRT1 (Fe2+ transporter) genes. Instead, when S-deficient plants were transferred to a Fe-free solution, no induction of Fe(III)-chelate reductase activity and ethylene production was observed. The same held true for LeFRO1 gene expression, while the increase in 59Fe2+ uptake rate and LeIRT1 gene over-expression were limited. Sulphur deficiency caused a decrease in total sulphur and thiol content; a concomitant increase in 35SO4 2− uptake rate was observed, this behaviour being particularly evident in Fe-deficient plants. Sulphur deficiency also virtually abolished expression of the nicotianamine synthase gene (LeNAS), independently of the Fe growth conditions. Sulphur deficiency alone also caused a decrease in Fe content in tomato leaves and an increase in root ethylene production; however, these events were not associated with either increased Fe(III)-chelate reductase activity, higher rates of 59Fe uptake or over-expression of either LeFRO1 or LeIRT1 genes. Results show that S deficiency could limit the capacity of tomato plants to cope with Fe-shortage by preventing the induction of the Fe(III)-chelate reductase and limiting the activity and expression of the Fe2+ transporter. Furthermore, the results support the idea that ethylene alone cannot trigger specific Fe-deficiency physiological responses in a Strategy I plant, such as tomato.  相似文献   

13.
The `push' hypothesis for the antioxidant action of Zn2+ is based on its displacement of iron from a low molecular weight pro-oxidant complex. In this study, the chemical plausibility of that proposed function is investigated by cyclic voltammetry. As a model for a pro-oxidative low molecular weight iron complex the FeII/IIIEDTA couple was examined. This complex was selected for its well-defined electrochemical, iron stability constants, and similarity to other low molecular weight chelates in physiological fluids in terms of logical binding sites, i.e. amino, and carboxylate groups. Also investigated were iron complexes of nitrilotriacetic acid and DL-glutamic acid. Results demonstrate that approximately 90% of the cyclic voltammetric peak current for FeIIIEDTA reduction and the EC′ current for the mediated reduction of H2O2 by FeII/IIIEDTA (Fenton Reaction) are lost when Zn2+ is introduced to a 1:1 molar ratio relative to iron. All experiments were conducted in HEPES buffered solutions at pH 7.4. Iron (II/III) complexes of nitrilotriacetic acid and DL-glutamic acid followed the same trends. Cyclic voltammetric experiments indicate that Zn2+ displaces FeIII from EDTA despite the much larger stability constant for the iron complex (1025.1) versus zinc (1016.50). The hydrolysis aided displacement of FeIII from EDTA by Zn2+ is considered by the equilibria modeling program, HySS. With FeIII hydrolysis products included, Zn2+ is able to achieve 90% displacement of iron from EDTA, a result consistent with cyclic voltammetric observations. Published online December 2004  相似文献   

14.
A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40–60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8–9. Metal ions such as Ca2+, Mn2+, Na+, and K+ enhanced the lipase activity, but Mg2+, Zn2+, and Fe2+ inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.  相似文献   

15.
Cohen CK  Garvin DF  Kochian LV 《Planta》2004,218(5):784-792
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe2+ ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn2+ and Cd2+ into pea (Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063–1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe2+ in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity 59Fe2+ uptake system (K m =54–93 nM). Additionally, radiotracer (65Zn, 109Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx (K m of 4 and 100 M, for Zn2+ and Cd2+, respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe2+ transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.  相似文献   

16.
The ATP.Mg-dependent type 1 protein phosphatase is inactive as isolated but can be activated in several different ways. In this report, we show that the phosphatase can also be activated by the Fe2+/ascorbate system. Activation of the phosphatase requires both Fe2+ ion and ascorbate and the level of activation is dependent on the concentrations of Fe2+ ion and ascorbate. In the presence of 20 mM ascorbate, the Fe2+ ion concentrations required for half-maximal and maximal activation are about 0.3 and 3mM, respectively. Several common divalent metal ions, including Co2+, Ni2+, Cu2+, Mg2+, and Ca2+ ions, cannot cooperate with ascorbate to activate the phosphatase, and SH-containing reducing agents such as 2-mercaptoethanol and dithiothreitol cannot cooperate with Fe2+ ion to activate the phosphatase, indicating that activation of the phosphatase by the Fe2+/ascorbate system is a specific process. Moreover, H2O2, a strong oxidizer, could significantly diminish the phosphatase activation by the Fe2+/ascorbate system, suggesting that reduction mechanism other than SH-SS interchange is a prerequisite for the Fe2+/ascorbate-mediated phosphatase activation. Taken together, the present study provides initial evidence for a new mode of type 1 protein phosphatase activation mechanism.Abbreviations MAPK mitogen-activated protein kinase - MCO metal ion-catalyzed oxidation - kinase FA the activating factor of ATP.Mg-dependent protein phosphatase - I2 inhibitor-2 - EDTA ethylenediaminetetraacetic acid - MBP myelin basic protein  相似文献   

17.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

18.
The biological effects of rare-earth ions on the organism have been studied using Pr3+ as a probe ion and Escherichia coli cell as a target. Atomic force microscopy (AFM) observation of the surface of E. coli cells shows that the presence of Pr3+ substantially changes the structure of the outer membrane. By induced coupled plasma-mass spectrometry (ICP-MS), more Cu2+ was found in the cells grown in the presence of Pr3+, indicating changes of cell permeability. Using energy dispersive X-ray spectroscopy (EDX), Ca2+ is found on the outer surface of the original cell. It is proposed that Pr3+ can replace Ca2+ from the binding sites because of their close ionic radii and similar ligand speciality.  相似文献   

19.
Oxidative reactions can result in the formation of electronically excited species that undergo radiative decay depending on electronic transition from the excited state to the ground state with subsequent ultra‐weak photon emission (UPE). We investigated the UPE from the Fe2+–EDTA (ethylenediaminetetraacetic acid)–AA (ascorbic acid)–H2O2 (hydrogen peroxide) system with a multitube luminometer (Peltier‐cooled photon counter, spectral range 380–630 nm). The UPE, of 92.6 μmol/L Fe2+, 185.2 μmol/L EDTA, 472 μmol/L AA, 2.6 mmol/L H2O2, reached 1217 ± 118 relative light units during 2 min measurement and was about two times higher (P < 0.001) than the UPE of incomplete systems (Fe2+–AA–H2O2, Fe2+–EDTA–H2O2, AA–H2O2) and medium alone. Substitution of Fe2+ with Cr2+, Co2+, Mn2+ or Cu2+ as well as of EDTA with EGTA (ethylene glycol‐bis(β‐aminoethyl ether)‐N,N,N′,N′‐tetraacetic acid) or citrate powerfully inhibited UPE. Experiments with scavengers of reactive oxygen species (dimethyl sulfoxide, mannitol, sodium azide, superoxide dismutase) revealed the dependence of UPE only on hydroxyl radicals. Dimethyl sulfoxide at the concentration of 0.74 mmol/L inhibited UPE by 79 ± 4%. Plant phenolics (ferulic, chlorogenic and caffec acids) at the concentration of 870 μmol/L strongly enhanced UPE by 5‐, 13.9‐ and 46.8‐times (P < 0.001), respectively. It is suggested that augmentation of UPE from Fe2+–EDTA–AA–H2O2 system can be applied for detection of these phytochemicals.  相似文献   

20.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号