首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究凋落物去除对秦岭天然林土壤团聚体稳定性及细根分布特征的影响机制,为森林生态治理提供理论依据。结果表明:(1)凋落物去除导致云杉林10-40 cm土层土壤中粒径大于0.25 mm水稳性团聚体含量(WR0.25)较对照显著降低(P<0.05);混交林10-40 cm土层的大于0.25 mm机械稳定性团聚体含量(DR0.25)显著降低(P<0.05);红桦林表层0-10 cm土壤团聚体的平均质量直径(MWD)显著降低(P<0.05);(2)凋落物去除导致三种天然林0-20 cm土层的细根生物量密度(FRBD)较对照显著降低44.18%-57.24%,细根体积(FRV)显著降低24.64%-60.41%;三种天然林中红桦林0-40 cm各土层的FRV最高;(3)凋落物去除导致云杉林0-40 cm土层的土壤容重较对照显著增加5.24%-13.04%,三种天然林0-40 cm土层的土壤有机碳含量显著降低7.92%-25.21%,全氮含量显著降低10.17%-18.10%;(4)相关分析表明,云杉林土壤的团聚体破坏率(PAD)和土壤不稳定团粒指数(ELT)与FRBD、细根根长密度(FRLD)和FRV均呈极显著负相关,混交林土壤的PAD与FRBD呈极显著负相关关系(r=-0.814),红桦林土壤团聚体MWD与FRBD、FRLD和细根比根长(FSRL)均呈显著负相关关系(r=-0.777、-0.771和-0.786)。综上,凋落物去除在总体上降低了天然林土壤团聚体的稳定性及有机碳和全氮含量,并且不利于林木细根的生长。  相似文献   

2.
The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.  相似文献   

3.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

4.
How tree root systems will respond to increased drought stress, as predicted for parts of Central Europe, is not well understood. According to the optimal partitioning theory, plants should enhance root growth relative to aboveground growth in order to reduce water limitations. We tested this prediction in a transect study with 14 mature forest stands of European beech (Fagus sylvatica L.) by analysing the response of the fine root system to a large decrease in annual precipitation (970–520 mm yr−1). In 3 years with contrasting precipitation regimes, we investigated leaf area and leaf biomass, fine root biomass and necromass (organic layer and mineral soil to 40 cm) and fine root productivity (ingrowth core approach), and analysed the dependence on precipitation, temperature, soil nutrient availability and stand structure. In contrast to the optimal partitioning theory, fine root biomass decreased by about a third from stands with >950 mm yr−1 to those with <550 mm yr−1, while leaf biomass remained constant, resulting in a significant decrease, and not an increase, in the fine root/leaf biomass ratio towards drier sites. Average fine root diameter decreased towards the drier stands, thereby partly compensating for the loss in root biomass and surface area. Both δ13C‐signature of fine root mass and the ingrowth core data indicated a higher fine root turnover in the drier stands. Principal components analyses (PCA) and regression analyses revealed a positive influence of precipitation on the profile total of fine root biomass in the 14 stands and a negative one of temperature and plant‐available soil phosphorus. We hypothesize that summer droughts lead to increased fine root mortality, thereby reducing root biomass, but they also stimulate compensatory fine root production in the drier stands. We conclude that the optimal partitioning theory fails to explain the observed decrease in the fine root/leaf biomass ratio, but is supported by the data if carbon allocation to roots is considered, which would account for enhanced root turnover in drier environments.  相似文献   

5.
Leuschner  Christoph  Hertel  Dietrich  Schmid  Iris  Koch  Oliver  Muhs  Annette  Hölscher  Dirk 《Plant and Soil》2004,258(1):43-56
Only very limited information exists on the plasticity in size and structure of fine root systems, and fine root morphology of mature trees as a function of environmental variation. Six northwest German old-growth beech forests (Fagus sylvatica L.) differing in precipitation (520 – 1030 mm year–1) and soil acidity/fertility (acidic infertile to basic fertile) were studied by soil coring for stand totals of fine root biomass (0–40 cm plus organic horizons), vertical and horizontal root distribution patterns, the fine root necromass/biomass ratio, and fine root morphology (root specific surface area, root tip frequency, and degree of mycorrhizal infection). Stand total of fine root biomass, and vertical and horizontal fine root distribution patterns were similar in beech stands on acidic infertile and basic fertile soils. In five of six stands, stand fine root biomass ranged between 320 and 470 g m–2; fine root density showed an exponential decrease with soil depth in all profiles irrespective of soil type. An exceptionally small stand fine root biomass (<150 g m–2) was found in the driest stand with 520 mm year–1 of rainfall. In all stands, fine root morphological parameters changed markedly from the topsoil to the lower profile; differences in fine root morphology among the six stands, however, were remarkably small. Two parameters, the necromass/biomass ratio and fine root tip density (tips per soil volume), however, were both much higher in acidic than basic soils. We conclude that variation in soil acidity and fertility only weakly influences fine root system size and morphology of F. sylvatica, but affects root system structure and, probably, fine root mortality. It is hypothesized that high root tip densities in acidic infertile soils compensate for low nutrient supply rates, and large necromasses are a consequence of adverse soil chemical conditions. Data from a literature survey support the view that rainfall is another major environmental factor that influences the stand fine root biomass of F. sylvatica.  相似文献   

6.
We compared the resin-core and buried-bag incubation methods for estimating nitrogen (N) transformation rates using the 15N pool dilution technique in alluvial soils of an early successional forest (ESF) and an old-growth forest (OGF) at the La Selva Biological Station in Costa Rica. Soil cores (38×100-mm) from both forests were incubated in situ for 7 days. The two methods gave generally similar estimates of net N mineralization rates for the two forests. Estimates of ammonium production by the resin-core method were higher than those by the buried-bag method in ESF, but did not differ significantly in OGF (p<0.05). Estimates of nitrate production by the two methods did not differ significantly. Nitrate averaged 74% and 81% of the total inorganic N production in ESF and OGF, respectively. Net N mineralization in ESF (6.6 mmol m-2d-1) did not differ significantly from that in OGF (5.0 mmol m-2d-1). Fluxes of ammonium and nitrate were high for both forests, but the OGF tended to have higher gross mineralization and nitrification rates than ESF. Approximately 60% of the gross nitrate production and less than 30% of the ammonium were immobilized by microorganisms.  相似文献   

7.
杨丽韫  罗天祥  吴松涛 《生态学报》2007,27(9):3609-3617
以我国东北长白山自然保护区内同一海拔梯度的原始阔叶红松林及其次生林——白桦山杨成熟林和白桦山杨幼林为对象,采用土钻取样法对不同演替阶段细根生物量的变化、细根垂直分布规律及其影响因子进行系统地研究。研究结果表明,在原始阔叶红松林的正向演替过程中,林地细根的总生物量逐渐增加,其中主要乔木细根的生物量逐渐增加,而灌木和草本细根的生物量则逐渐降低。在演替过程中,细根的垂直分布逐渐加深。在长白山地区,3块林地中细根生物量的组成分布受林分植被组成的影响;细根的垂直分布与土壤容重、水分含量以及不同土层中C、N含量存在一定的相关性,但与土壤温度则不存在相关关系。  相似文献   

8.
黄土区不同林龄刺槐人工林细根的衰老生理特征   总被引:3,自引:0,他引:3  
苏瑾  王迪海 《生态学报》2016,36(14):4423-4429
以黄土高原刺槐人工林为研究对象,采用手工挖掘法,配合完整土块法获取根系样品,分析幼龄(11a),中龄(22a),成熟(34a)刺槐人工林细根活力、可溶性糖含量、可溶性蛋白含量和细胞膜透性等细根衰老生理指标的差异,为深入了解刺槐细根的生长和衰老机制提供参考。结果表明:(1)在生长季节,刺槐细根活力表现为,幼龄林成熟林中龄林,可溶性糖含量、可溶性蛋白含量随着林龄增大而增加,而细胞膜透性则随林龄的增加而减小。(2)随着根序增加,根活力和可溶性糖含量增加,而可溶性蛋白含量和细胞膜透性则呈波动式降低。这表明,在生长季节幼龄林细根较中龄林和成熟林更容易出现衰老,刺槐不同根序衰老具有顺序性,衰老先从1级根开始,然后是2级根和3级根。  相似文献   

9.
Fine root acclimation to different environmental conditions is crucial for growth and sustainability of forest trees. Relatively small changes in fine root standing biomass (FRB), morphology or mycorrhizal symbiosis may result in a large change in forest carbon, nutrient and water cycles. We elucidated the changes in fine root traits and associated ectomycorrhizal (EcM) fungi in 12 Norway spruce stands across a climatic and N deposition gradient from subarctic‐boreal to temperate regions in Europe (68°N–48°N). We analysed the standing FRB and the ectomycorrhizal root tip biomass (EcMB, g m?2) simultaneously with measurements of the EcM root morphological traits (e.g. mean root length, root tissue density (RTD), N% in EcM roots) and frequency of dominating EcM fungi in different stands in relation to climate, soil and site characteristics. Latitude and N deposition explained the greatest proportion of variation in fine root traits. EcMB per stand basal area (BA) increased exponentially with latitude: by about 12.7 kg m?2 with an increase of 10° latitude from southern Germany to Estonia and southern Finland and by about 44.7 kg m?2 with next latitudinal 10° from southern to northern Finland. Boreal Norway spruce forests had 4.5 to 11 times more EcM root tips per stand BA, and the tips were 2.1 times longer, with 1.5 times higher RTD and about 1/3 lower N concentration. There was 19% higher proportion of root tips colonized by long‐distance exploration type forming EcM fungi in the southern forests indicating importance of EcM symbiont foraging strategy in fine root nutrient acquisition. In the boreal zone, we predict ca. 50% decrease in EcMB per stand BA with an increase of 2 °C annual mean temperature. Different fine root foraging strategies in boreal and temperate forests highlight the importance of complex studies on respective regulatory mechanisms in changing climate.  相似文献   

10.
The question of how tropical trees cope with infertile soils has been challenging to address, in part, because fine root dynamics must be studied in situ. We used annual fertilization with nitrogen (N as urea, 12.5 g N m?2 year?1), phosphorus (P as superphosphate, 5 g P m?2 year?1) and potassium (K as KCl, 5 g K m?2 year?1) within 38 ha of old‐growth lowland tropical moist forest in Panama and examined fine root dynamics with minirhizotron images. We expected that added P, above all, would (i) decrease fine root biomass but, (ii) have no impact on fine root turnover. Soil in the study area was moderately acidic (pH = 5.28), had moderate concentrations of exchangeable base cations (13.4 cmol kg?1), low concentrations of Bray‐extractable phosphate (PO4 = 2.2 mg kg?1), and modest concentrations of KCl‐extractable nitrate (NO3 = 5.0 mg kg?1) and KCl‐extractable ammonium (NH4 = 15.5 mg kg?1). Added N increased concentrations of KCl‐extractable NO3 and acidified the soil by one pH unit. Added P increased concentrations of Bray‐extractable PO4 and P in the labile fraction. Concentrations of exchangeable K were elevated in K addition plots but reduced by N additions. Fine root dynamics responded to added K rather than added P. After 2 years, added K decreased fine root biomass from 330 to 275 g m?2. The turnover coefficient of fine roots <1 mm diameter ranged from 2.6 to 4.4 per year, and the largest values occurred in plots with added K. This study supported the view that biomass and dynamics of fine roots respond to soil nutrient availability in species‐rich, lowland tropical moist forest. However, K rather than P elicited root responses. Fine roots smaller than 1 mm have a short lifetime (<140 days), and control of fine root production by nutrient availability in tropical forests deserves more study.  相似文献   

11.
Seasonal changes and vertical distribution of fine (< 2 mm diameter) and coarse (2-10 mm diameter) root mass of Pinus kesiya and fine root and rhizome mass of herbaceous species, and root production were studied in the 6-, 15- and 23-year old Pinus kesiya forest stands at Shillong, in the Meghalaya state of north-east India. Maximum fine and coarse root mass of P. kesiya, and fine root and rhizome mass of the ground vegetation were recorded during the rainy season. The contribution of the tree fine roots in 0-10 cm soil layer declined from 51% in the 6-year old stand to about 33% in the older stands. The major proportion (63-88%) of herbaceous fine root and rhizome mass was concentrated in this soil layer in all the three stands. The majority (36-57%) of tree coarse roots were present in the 10-20 cm layer in all the stands. The biomass and necromass values in the case of fine roots were more or less equal in a given stand, but the coarse roots had 5 to 9 times more live than the dead mass. The proportion of herbaceous fine root mass to the total fine root mass declined from 54% in the 6-year old stand to 30-32% in the 15- and 23-year old stands. The mean total fine root mass (pine + herbaceous species) decreased from 417 g m–2 in the 6-year old stand to 302 in 15-year and 322 g m–2 in the 23-year old stand. Annual fine root production showed a marked decrease from 1055 g m–2 in the 6-year old stand to 743 g m–2 in the 23-year old stand, but coarse root production increased from 169 g m–2 in the 6-year to 466 g m–2  in the 23-year old stand; the total root production thus remained approximately constant.  相似文献   

12.
Radiocarbon (14C) provides a measure of the mean age of carbon (C) in roots, or the time elapsed since the C making up root tissues was fixed from the atmosphere. Radiocarbon signatures of live and dead fine (<2 mm diameter) roots in two mature Amazon tropical forests are consistent with average ages of 4–11 years (ranging from <1 to >40 years). Measurements of 14C in the structural tissues of roots known to have grown during 2002 demonstrate that new roots are constructed from recent (<2‐year‐old) photosynthetic products. High Δ14C values in live roots most likely indicate the mean lifetime of the root rather than the isotopic signature of inherited C or C taken up from the soil. Estimates of the mean residence time of C in forest fine roots (inventory divided by loss rate) are substantially shorter (1–3 years) than the age of standing fine root C stocks obtained from radiocarbon (4–11 years). By assuming positively skewed distributions for root ages, we can effectively decouple the mean age of C in live fine roots (measured using 14C) from the rate of C flow through the live root pool, and resolve these apparently disparate estimates of root C dynamics. Explaining the 14C values in soil pore space CO2, in addition, requires that a portion of the decomposing roots be cycled through soil organic matter pools with decadal turnover time.  相似文献   

13.
细根是植物吸收水分和养分的主要器官。全球变暖背景下,研究森林细根生物量及其环境因子的变化对生态系统碳平衡、碳收支及其贡献率具有重要意义。采用土钻法和室内分析法对青海省森林6个海拔梯度上5种林分类型的细根生物量和土壤理化性质进行测定,并分析了与环境因子之间的相互关系。结果表明:(1)青海省森林0—40 cm土层总细根生物量平均为8.50 t/hm~2,随着海拔梯度的增加先降低后升高,不同海拔梯度细根生物量差异显著(P0.05),最大值出现在2100—2400 m处。(2)5种林分0—40 cm土层总细根生物量为:白桦白杨云杉圆柏山杨,不同林分间细根生物量差异不显著。(3)细根垂直分布随土层深度增加而减少,且70%的细根集中在表层(0—20 cm)。(4)土壤容重深层(20—40 cm)显著大于表层(P0.05),并随海拔梯度逐步增加,且林分间差异较大。(5)全碳(Total carbon, TC)、全氮(Total nitrogen, TN)、全磷(Total phosphorus, TP)含量表层显著高于深层。TC、TN随海拔升高先增后降低,TP则随海拔逐步降低。不同林分间土壤养分差异较明显。(6)结构方程模型分析得到海拔、土层、容重直接影响细根生物量,细根生物量直接影响土壤养分。林分类型通过土壤容重间接影响细根生物量。因此,林分和海拔通过影响土壤微环境而影响到细根生物量及其空间分布格局。  相似文献   

14.
Pietola  Liisa  Smucker  Alvin J.M. 《Plant and Soil》1998,200(1):95-105
Field experiments were performed in Southern Finland on fine sand and organic soil in 1990 and 1991 to study carrot roots. Fall ploughed land was loosened by rotary harrowing to a depth of 20 cm or compacted under moist conditions to a depth of 25–30 cm by three passes of adjacent wheel tracks with a tractor weighing 3 Mg, in April were contiguously applied across the plot before seed bed preparation. Sprinkler irrigation (30 mm) was applied to fine sand when moisture in the 0–15 cm range of soil depth was 50% of plant-available water capacity. For root sampling, polyvinyl chloride (PVC) cylinders (30 × 60 cm) were installed in the rows of experimental plots after sowing, and removed at harvest. Six carrot plants were grown in each of in these soil colums in situ in the field.Fine root length and width were quantified by image analysis. Root length density (RLD) per plant was 0.2–1.0 cm cm-3 in the 0–30 cm range. The fibrous root system of one carrot had total root lengths of 130–150 m in loose fine sand and 180–200 m in compacted fine sand. More roots were observed in irrigated than non-irrigated soils. In the 0–50 cm range of organic soil, 230–250 m of root length were removed from loosened organic soils and 240–300 m from compacted soils. Specific root surface area (surface area divided by dry root weight) of a carrot fibrous root system averaged 1500–2000 cm2 g-1. Root length to weight ratios of 250–350 m g-1 effectively compare with the ratios of other species.Fibrous root growth was stimulated by soil compaction or irrigation to a depth of 30 cm, in both the fine sand and organic soils, suggesting better soil water supply in compacted than in loosened soils. Soil compaction increased root diameters more in fine sand than it did in organic soil. Most of the root length in loosened soils (fine sand 90%, organic soil 80%) and compacted soils (fine sand 80%, organic soil 75%) was composed of roots with diameters of approximately 0.15 mm. With respect to dry weight, length, surface area and volume of the fibrous root system, all the measurements gave significant resposes to irrigation and soil compaction. Total root volumes in the 0–50 cm of soil were 4.3 cm3 and 9.8 cm3 in loosened fine sand and organic soils, respectively, and 6.7 cm3 and 13.4 cm3 in compacted sand and organic soils, respectively. In fine sand, irrigation increased the volume from 4.8 to 6.3 cm3.  相似文献   

15.
Tree root systems, which play a major role in below-ground carbon (C) dynamics, are one of the key research areas for estimating long-term C cycling in forest ecosystems. In addition to regulating major C fluxes in the present conditions, tree root systems potentially hold numerous controls over forest responses to a changing environment. The predominant contribution of tree root systems to below-ground C dynamics has been given little emphasis in forest models. We developed the TRAP model, i.e. Tree Root Allocation of Photosynthates, to predict the partitioning of photosynthates between the fine and coarse root systems of trees among series of soil layers. TRAP simulates root system responses to soil stress factors affecting root growth. Validation data were obtained from two Belgian experimental forests, one mostly composed of beech (Fagus sylvatica L.) and the other of Scots pine (Pinus sylvestris L.). TRAP accurately predicted (R = 0.88) night-time CO2 fluxes from the beech forest for a 3-year period. Total fine root biomass of beech was predicted within 6% of measured values, and simulation of fine root distribution among soil layers was accurate. Our simulations suggest that increased soil resistance to root penetration due to reduced soil water content during summer droughts is the major mechanism affecting the distribution of root growth among soil layers of temperate Belgian forests. The simulated annual rate of C input to soil litter due to the fine root turnover of the Scots pine was 207 g C m–2 yr–1. The TRAP model predicts that fine root turnover is the single most important source of C to the temperate forest soils of Belgium.  相似文献   

16.
Fine root turnover is a major pathway for carbon and nutrient cycling in forest ecosystems. However, to estimate fine root turnover, it is important to first understand the fine root dynamic processes associated with soil resource availability and climate factors. The objectives of this study were: (1) to examine patterns of fine root production and mortality in different seasons and soil depths in the Larix gmelinii and Fraxinus mandshurica plantations, (2) to analyze the correlation of fine root production and mortality with environmental factors such as air temperature, precipitation, soil temperature and available nitrogen, and (3) to estimate fine root turnover. We installed 36 Minirhizotron tubes in six mono-specific plots of each species in September 2003 in the Mao’ershan Experimental Forest Station. Minirhizotron sampling was conducted every two weeks from April 2004 to April 2005. We calculated the average fine root length, annual fine root length production and mortality using image data of Minirhizotrons, and estimated fine root turnover using three approaches. Results show that the average growth rate and mortality rate in L. melinii were markedly smaller than in F. mandshurica, and were highest in the surface soil and lowest at the bottom among all the four soil layers. The annual fine root production and mortality in F. mandshurica were significantly higher than in L. gmelinii. The fine root production in spring and summer accounted for 41.7% and 39.7% of the total annual production in F. mandshurica and 24.0% and 51.2% in L. gmelinii. The majority of fine root mortality occurred in spring and summer for F. mandshurica and in summer and autumn for L. gmelinii. The turnover rate was 3.1 a−1 for L. gmelinii and 2.7 a−1 for F. mandshurica. Multiple regression analysis indicates that climate and soil resource factors together could explain 80% of the variations of the fine root seasonal growth and 95% of the seasonal mortality. In conclusion, fine root production and mortality in L. gmelinii and F. mandshurica have different patterns in different seasons and at different soil depths. Air temperature, precipitation, soil temperature and soil available nitrogen integratively control the dynamics of fine root production, mortality and turnover in both species. Transtlated from Journal of Plant Ecology, 2007, 31(2): 333–342 [译自: 植物生态学报]  相似文献   

17.
核桃-小麦复合系统中细根生长动态及竞争策略   总被引:3,自引:0,他引:3  
以核桃(Juglans regia)-小麦(Triticum aestivum)间作复合系统为研究对象,用微根窗和根钻相结合的方法采样,研究复合系统中核桃和小麦细根年内年际的生长动态和竞争适应策略,为农林复合系统的经营管理和竞争模型的建立提供理论依据和技术支持。结果表明,间作核桃和小麦根系均在上半年有一个大的生长高峰(5月和4月),在下半年有一个小的生长高峰(9月和11月),二者的竞争主要发生在上半年的大生长高峰期。在各年份各土层,间作核桃的根长密度均低于单作核桃,且在从第7年开始存在显著差异。在0—20 cm土层间作小麦根长密度在第3—7年间获得迅速提高,从第7年开始显著高于单作小麦,但在20 cm以下土层则相反。间作使核桃和小麦细根生态位实现了分离,11年的观察期内间作核桃比单作核桃细根的垂直分布中心下移了6.59 cm,间作小麦比单作小麦的上移了8.59 cm。在根系竞争策略方面,小麦根系是通过短期内的快速生长,迅速占据土壤空间获得竞争优势;而核桃根系是通过根系的逐年积累,逐步占据土壤空间从而获得竞争优势。可以干扰核桃根系积累过程的"竞争-干扰-再平衡"农林复合经营管理策略可以让复合系统中核桃和小麦保持各自竞争优势的情况下实现共存。在根系形态方面,自身细根直径较小者小麦在剧烈竞争区域以增加细根直径减小比根长来适应竞争,而自身细根直径较大者核桃则相反。  相似文献   

18.
While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type (13C/15N‐labeled needles vs. fine roots) and placement‐depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement‐depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root‐derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle‐derived C and N was transferred into stable SOM fractions. The stoichiometry of litter‐derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N‐rich compounds for long‐term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates.  相似文献   

19.
Summary Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.  相似文献   

20.
Mongolia's Larix sibirica forests at the southern fringe of the Eurosiberian boreal forest belt are exposed not only to very low winter temperatures, but also to frequent summer droughts. It is not completely known how Siberian larch adapts to these stressors. We examined whether (i) these forests differ in their fine root bio- and necromass from more humid boreal forests further in the North and (ii) inter-annual fluctuations in fine root biomass are related to tree vitality. In two exceptionally dry summers, we found only 4–5 g DM m?2 of fine root biomass (in 0–20 cm depth), which is far less than typical conifer fine root biomass figures from boreal forests (c. 200–400 g m?2) and the lowest forest fine root biomass reported worldwide; in a moist summer, fine root biomass was 20 fold higher. In contrast to fine root biomass, both necromass and non-tree root mass were high in all three years. From the large increase of fine root biomass in the moist summer and the generally high root necromass, we conclude that drought-induced fine root dieback was the likely cause of the very small amount of live root mass in the dry summers. Larch fine roots seem to be more drought-sensitive than shoots, since marked needle loss did not occur under the extreme conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号