首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ran GTPase regulates mitotic spindle assembly.   总被引:28,自引:0,他引:28  
Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.  相似文献   

2.
Transport of macromolecules between the nucleus and cytoplasm involves the recognition of intrinsic localization signals by either import or export receptors. The interaction of the receptors with their cargo is regulated by the small GTPase Ran in its GTP bound state. We have investigated the interaction of RanGTP with the import factor, importin beta, the export factor, CRM1, and the Ran binding protein, RanBP1, in solution. Importin beta specifically protected residues in the switch regions and basic patch region of Ran against proteolytic cleavage, whereas RanBP1 protected the C terminus. Moreover, the binding of importin beta induced a conformational change in the structure of Ran leading to an exposure of the C terminus and stimulated the binding of RanBP1. Mutating the basic patch (HRKK(142)) of Ran resulted in an increased binding of RanBP1 and weakened importin beta binding. In contrast to wild-type Ran, the mutant Ran could be released from importin beta independently of importin alpha. These data provide experimental support for a model in which the accessibility of the C terminus of Ran is influenced by an intramolecular interaction between the basic patch and the C-terminal acidic DEDDDL(216) motif. Binding of importin beta probably disrupts this interaction causing an exposure of the C-terminal extension, which is favorable for RanBP1 binding. Interestingly, basic patch mutations abolish CRM1 interaction, indicating that the determinants for RanGTP binding to the export factor, CRM1, is different from the import factor, importin beta.  相似文献   

3.
Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 from Xenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran’s guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued by further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.  相似文献   

4.
We discovered several novel interactions between proteins involved in Crm1-mediated nuclear export of the nuclear export signal containing human immunodeficiency virus type 1 protein Rev. First, a Rev/Crm1/RanGTP complex (where Ran is Ras-related nuclear protein) reacts with some nucleoporins (Nup42 and Nup159) but not others (NSP1, Nup116, and Nup1), forming a Nup/Crm1/RanGTP complex and concomitantly releasing Rev. Second, RanBP1 (or homologous proteins) can displace Nup and form a ternary RanBP1/RanGTP/Crm1 complex that can be disassembled by RanGAP via GTP hydrolysis. Third, and most surprisingly, RanBP1/RanGTP/Crm1 can be disassembled without GTP hydrolysis by the nucleotide exchange factor RanGEF. Recycling of a Ran/RanGEF complex by GTP and Mg2+ is stimulated by both Crm1 and Rev, allowing reformation of a Rev/Crm1/RanGTP complex. Based on these reactions we propose a model for Crm1-mediated export.  相似文献   

5.
Transport receptors of the Importin beta family shuttle between the nucleus and cytoplasm and mediate transport of macromolecules through nuclear pore complexes. They interact specifically with the GTP-binding protein Ran, which in turn regulates their interaction with cargo. Here, we report the three-dimensional structure of a complex between Ran bound to the nonhydrolyzable GTP analog GppNHp and a 462-residue fragment from Importin beta. The structure of Importin beta shows 10 tandem repeats resembling HEAT and Armadillo motifs. They form an irregular crescent, the concave site of which forms the interface with Ran-triphosphate. The importin-binding site of Ran does not overlap with that of the Ran-binding domain of RanBP2.  相似文献   

6.
Receptor-mediated nucleocytoplasmic transport is dependent on the GTPase Ran and Ran-binding protein 1 (RanBP1). The acidic C terminus of Ran is required for high affinity interaction between Ran and RanBP1. We found that a novel Ran mutant with four of its five acidic C-terminal amino acids modified to alanine (RanC4A) has an approximately 20-fold reduced affinity for RanBP1. We investigated the effects of RanC4A on nuclear import and export in permeabilized HeLa cells. Although RanC4A promotes accumulation of the nuclear export receptor CRM1 at the cytoplasmic nucleoporin Nup214, it strongly stimulates nuclear export of GFP-NFAT. Since RanC4A exhibits an elevated affinity for CRM1 and other nuclear transport receptors, this suggests that formation of the export complex containing CRM1, Ran-GTP, and substrate is a rate-limiting step in export, not release from Nup214. Conversely, importin alpha/beta-dependent nuclear import of bovine serum albumin, coupled to a classical nuclear localization sequence is strongly inhibited by RanC4A. Inhibition can be reversed by additional importin alpha, which promotes the formation of an importin alpha/beta complex. These results provide physiological evidence that release of Ran-GTP from importin beta by RanBP1 and importin alpha is critical for the recycling of importin beta to a transport-competent state.  相似文献   

7.
In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes.  相似文献   

8.
9.
M Dasso  T Seki  Y Azuma  T Ohba    T Nishimoto 《The EMBO journal》1994,13(23):5732-5744
The Ran protein is a small GTPase that has been implicated in a large number of nuclear processes including transport. RNA processing and cell cycle checkpoint control. A similar spectrum of nuclear activities has been shown to require RCC1, the guanine nucleotide exchange factor (GEF) for Ran. We have used the Xenopus laevis egg extract system and in vitro assays of purified proteins to examine how Ran or RCC1 could be involved in these numerous processes. In these studies, we employed mutant Ran proteins to perturb nuclear assembly and function. The addition of a bacterially expressed mutant form of Ran (T24N-Ran), which was predicted to be primarily in the GDP-bound state, profoundly disrupted nuclear assembly and DNA replication in extracts. We further examined the molecular mechanism by which T24N-Ran disrupts normal nuclear activity and found that T24N-Ran binds tightly to the RCC1 protein within the extract, resulting in its inactivation as a GEF. The capacity of T24N-Ran-blocked interphase extracts to assemble nuclei from de-membranated sperm chromatin and to replicate their DNA could be restored by supplementing the extract with excess RCC1 and thereby providing excess GEF activity. Conversely, nuclear assembly and DNA replication were both rescued in extracts lacking RCC1 by the addition of high levels of wild-type GTP-bound Ran protein, indicating that RCC1 does not have an essential function beyond its role as a GEF in interphase Xenopus extracts.  相似文献   

10.
Ran-binding protein (RanBP) 1 is a major regulator of the Ran GTPase and is encoded by a regulatory target gene of E2F factors. The Ran GTPase network controls several cellular processes, including nucleocytoplasmic transport and cell cycle progression, and has recently also been shown to regulate microtubule nucleation and spindle assembly in Xenopus oocyte extracts. Here we report that RanBP1 protein levels are cell cycle regulated in mammalian cells, increase from S phase to M phase, peak in metaphase, and abruptly decline in late telophase. Overexpression of RanBP1 throughout the cell cycle yields abnormal mitoses characterized by severe defects in spindle polarization. In addition, microinjection of anti-RanBP1 antibody in mitotic cells induces mitotic delay and abnormal nuclear division, reflecting an abnormal stabilization of the mitotic spindle. Thus, regulated RanBP1 activity is required for proper execution of mitosis in somatic cells.  相似文献   

11.
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.  相似文献   

12.
The cytoplasmic disassembly of Ran.GTP.importin and Ran.GTP.exportin. cargo complexes is an essential step in the corresponding nuclear import and export cycles. It has previously been shown that such disassembly can be mediated by RanBP1 in the presence of RanGAP. The nuclear pore complex protein RanBP2 (Nup358) contains four Ran-binding domains (RanBDi) that might function like RanBP1. We used biophysical assays based on fluorescence-labeled probes and on surface plasmon resonance to investigate the dynamic interplay of Ran in its GDP- and GTP-complexed states with RanBDis and with importin-beta. We show that RanBP1 and the four RanBDis from RanBP2 have comparable affinities for Ran.GTP (10(8)-10(9) M(-1)). Deletion of Ran's C-terminal (211)DEDDDL(216) sequence weakens the interaction of Ran.GTP with RanBPis approximately 2000-fold, but accelerates the association of Ran.GTP with importin-beta 10-fold. Importin-beta binds Ran.GTP with a moderate rate, but attains a high affinity for Ran (K(D) = 140 pM) via an extremely low dissociation rate of 10(-5) s(-)(1). Association with Ran is accelerated 3-fold in the presence of RanBP1, which presumably prevents steric hindrance caused by the Ran C-terminus. In addition, we show that the RanBDis of RanBP2 are full equivalents of RanBP1 in that they also costimulate RanGAP-catalyzed GTP hydrolysis in Ran and relieve the GTPase block in a Ran.GTP.transportin complex. Our data suggest that the C-terminus of Ran functions like a loose tether in Ran.GTP complexes of importins or exportins that exit the nucleus. This flag is then recognized by the multiple RanBDis at or near the nuclear pore complex, allowing efficient disassembly of these Ran.GTP complexes.  相似文献   

13.
Using evidence derived primarily from studies using Xenopus egg extracts, a model for the role of Ran in multiple stages during NE assembly can be proposed (Figure 2). Ran is concentrated on chromatin prior to NE assembly and recruits RCC1 that generates Ran-GTP locally. Recruitment of RCC1 to chromatin may be a specialized mechanism to initiate NE assembly following fertilization of the egg, whereas in somatic cells, RCC1 may be present on chromatin throughout mitosis. Ran-GTP recruits vesicles to the surface of chromatin, and promotes vesicle fusion to form the double membrane of the NE. Ran-GTP may recruit membrane vesicles to chromatin through binding to integral membrane proteins through importin-beta. A transient complex would be formed between Ran-GTP, importin-beta and the target protein, which would be released locally to promote assembly of a precursor complex. GTP hydrolysis by Ran would release importin-beta, but may also play a role in vesicle fusion. Ran-GTP also promotes NPC assembly by releasing nucleoporins such as Nup107 from inhibitory complexes with importin-beta. In vertebrate cells undergoing mitosis, the majority of Ran molecules are excluded from the chromosomes and dispersed into the cytoplasm. Relocalization of Ran to chromatin at the end of mitosis may co-ordinate the initiation of NE assembly with disassembly of the mitotic spindle. The function of Ran in this transition is likely to be coupled to changes in the activity of cyclin-dependent protein kinases and other activities that control the progression of the cell cycle. Thus, changes in the localization of Ran and its regulators provide temporal and spatial control of NE assembly at the end of mitosis.  相似文献   

14.
RanGAP1 is the activating protein for the Ran GTPase. Vertebrate RanGAP1 is conjugated to a small ubiquitin-like protein, SUMO-1. This modification promotes association of RanGAP1 with the interphase nuclear pore complex (NPC) through binding to the nucleoporin RanBP2, also known as Nup358. During mitosis, RanGAP1 is concentrated at kinetochores in a microtubule- (MT) and SUMO-1-dependent fashion. RanBP2 is also abundantly found on kinetochores in mitosis. Here we show that ablation of proteins required for MT-kinetochore attachment (Hec1/Ndc80, Nuf2 ) disrupts RanGAP1 and RanBP2 targeting to kinetochores. No similar disruption was observed after ablation of proteins nonessential for MT-kinetochore interactions (CENP-I, Bub1, CENP-E ). Acquisition of RanGAP1 and RanBP2 by kinetochores is temporally correlated in untreated cells with MT attachment. These patterns of accumulation suggest a loading mechanism wherein the RanGAP1-RanBP2 complex may be transferred along the MT onto the kinetochore. Depletion of RanBP2 caused mislocalization of RanGAP1, Mad1, Mad2, CENP-E, and CENP-F, as well as loss of cold-stable kinetochore-MT interactions and accumulation of mitotic cells with multipolar spindles and unaligned chromosomes. Taken together, our observations indicate that RanBP2 and RanGAP1 are targeted as a single complex that is both regulated by and essential for stable kinetochore-MT association.  相似文献   

15.
The Ran GTPase controls multiple mitotic processes in Xenopus egg extracts, including mitotic checkpoints, spindle assembly and post-mitotic nuclear envelope reassembly. We have analyzed Ran’s role in somatic cells. We uncovered a novel mitotic role of Ran-GTP, involving the Crm1 nuclear export receptor. This pathway is an important mode of Ran-GTP function during mitosis in mammalian somatic cells, whichmediates the recruitment of the RanGAP1/RanBP2 complex to kinetochores and maintains the microtubule-based fibers connecting kinetochores to spindle poles (kfibers). Here we discuss potential implications of these findings for normal k-fiber assembly.  相似文献   

16.
The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.  相似文献   

17.
The Ran GTPase is required for nuclear assembly, nuclear transport, spindle assembly, and mitotic regulation. While the first three processes are relatively well understood, details of Ran's role in mitotic progression remain obscure. We have found that elevated levels of Ran's exchange factor (RCC1) abrogate the spindle assembly checkpoint in Xenopus egg extracts, restore APC/C activity, and disrupt the kinetochore localization of checkpoint regulators, including Mad2, CENP-E, Bub1, and Bub3. Depletion of Ran's GTPase activating protein (RanGAP1) and its accessory factor (RanBP1) similarly abrogates checkpoint arrest. By contrast, the addition of RanGAP1 and RanBP1 to extracts with exogenous RCC1 restores the spindle checkpoint. Together, these observations suggest that the spindle checkpoint is directly responsive to Ran-GTP levels. Finally, we observe a clear wave of RCC1 association to mitotic chromosomes at the metaphase-anaphase transition in normal cycling extracts, suggesting that this mechanism has an important role in unperturbed cell cycles.  相似文献   

18.
A major question in nuclear import concerns the identity of the nucleoporin(s) that interact with the nuclear localization sequences (NLS) receptor and its cargo as they traverse the nuclear pore. Ligand blotting and solution binding studies of isolated proteins have attempted to gain clues to the identities of these nucleoporins, but the studies have from necessity probed binding events far from an in vivo context. Here we have asked what binding events occur in the more physiological context of a Xenopus egg extract, which contains nuclear pore subcomplexes in an assembly competent state. We have then assessed our conclusions in the context of assembled nuclear pores themselves. We have used immunoprecipitation to identify physiologically relevant complexes of nucleoporins and importin subunits. In parallel, we have demonstrated that it is possible to obtain immunofluorescence localization of nucleoporins to subregions of the nuclear pore and its associated structures. By immunoprecipitation, we find the nucleoporin Nup153 and the pore-associated filament protein Tpr, previously shown to reside at distinct sites on the intranuclear side of assembled pores, are each in stable subcomplexes with importin α and β in Xenopus egg extracts. Importin subunits are not in stable complexes with nucleoporins Nup62, Nup93, Nup98, or Nup214/CAN, either in egg extracts or in extracts of assembled nuclear pores. In characterizing the Nup153 complex, we find that Nup153 can bind to a complete import complex containing importin α, β, and an NLS substrate, consistent with an involvement of this nucleoporin in a terminal step of nuclear import. Importin β binds directly to Nup153 and in vitro can do so at multiple sites in the Nup153 FXFG repeat region. Tpr, which has no FXFG repeats, binds to importin β and to importin α/β heterodimers, but only to those that do not carry an NLS substrate. That the complex of Tpr with importin β is fundamentally different from that of Nup153 is additionally demonstrated by the finding that recombinant β or β45–462 fragment freely exchanges with the endogenous importin β/Nup153 complex, but cannot displace endogenous importin β from a Tpr complex. However, the GTP analogue GMP-PNP is able to disassemble both Nup153– and Tpr–importin β complexes. Importantly, analysis of extracts of isolated nuclei indicates that Nup153– and Tpr–importin β complexes exist in assembled nuclear pores. Thus, Nup153 and Tpr are major physiological binding sites for importin β. Models for the roles of these interactions are discussed.  相似文献   

19.
RNA undergoing nuclear export first encounters the basket of the nuclear pore. Two basket proteins, Nup98 and Nup153, are essential for mRNA export, but their molecular partners within the pore are largely unknown. Because the mechanism of RNA export will be in question as long as significant vertebrate pore proteins remain undiscovered, we set out to find their partners. Fragments of Nup98 and Nup153 were used for pulldown experiments from Xenopus egg extracts, which contain abundant disassembled nuclear pores. Strikingly, Nup98 and Nup153 each bound the same four large proteins. Purification and sequence analysis revealed that two are the known vertebrate nucleoporins, Nup96 and Nup107, whereas two mapped to ORFs of unknown function. The genes encoding the novel proteins were cloned, and antibodies were produced. Immunofluorescence reveals them to be new nucleoporins, designated Nup160 and Nup133, which are accessible on the basket side of the pore. Nucleoporins Nup160, Nup133, Nup107, and Nup96 exist as a complex in Xenopus egg extracts and in assembled pores, now termed the Nup160 complex. Sec13 is prominent in Nup98 and Nup153 pulldowns, and we find it to be a member of the Nup160 complex. We have mapped the sites that are required for binding the Nup160 subcomplex, and have found that in Nup98, the binding site is used to tether Nup98 to the nucleus; in Nup153, the binding site targets Nup153 to the nuclear pore. With transfection and in vivo transport assays, we find that specific Nup160 and Nup133 fragments block poly[A]+ RNA export, but not protein import or export. These results demonstrate that two novel vertebrate nucleoporins, Nup160 and Nup133, not only interact with Nup98 and Nup153, but themselves play a role in mRNA export.  相似文献   

20.
Chromosomal missegregation is a common feature of many human tumors. Recent studies have indicated a link between nucleoporin RanBP2/Nup358 and chromosomal segregation during mitosis; however, the molecular details have yet to be fully established. Observed through live cell imaging and flow cytometry, here we show that RNA interference-mediated knockdown of RanBP2 induced G2/M phase arrest, metaphase catastrophe and mitotic cell death. Furthermore, RanBP2 down-modulation disrupted importin/karyopherin β1 as well as the expression and localization of the Ran GTPase activating protein 1. We found that N-terminal of RanBP2 interacted with the N-terminal of importin β1. Moreover, at least a portion of RanBP2 partially localizes at the centrosome during mitosis. Notably, we also found that GTPase Ran is also involved in the regulation of RanBP2–importin β1 interaction. Overall, our results suggest that mitotic arrest and the following cell death were caused by depletion of RanBP2. Our findings point to a crucial role for RanBP2 in proper mitotic progression and faithful chromosomal segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号