首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is now recognized that cross-talk between adipocytes and adipose tissue stromal cells such as macrophages contributes to local and systemic inflammation. One factor from adipocytes that may participate in this interaction and that is frequently elevated in inflammatory conditions such as obesity, insulin resistance, and type 2 diabetes is free fatty acids (FFA). To investigate the potential for FFA to enhance macrophage inflammation, we exposed U937 macrophages to physiological levels (150 microM) of FFA. Palmitic acid (PA), the predominant saturated FFA released from adipose tissue, but not unsaturated FFA, induced an approximately 6-fold (p<0.05) increase in IP-10 gene expression (and 2- to 4-fold increases in IL-8, MCP-1, COX-2, and MIG). PA also induced an approximately 2-fold increase (p<0.05) in active NF-kappaB, and two structurally distinct NF-kappaB inhibitors effectively blocked PA-induced IP-10 gene expression. Conditioned medium from PA-treated cells increased lymphocyte migration 41% (p<0.05) which was significantly reduced by IP-10-neutralizing antibody. These results suggest that elevated concentrations of PA commonly present in obese and insulin resistant individuals can increase NF-kappaB-mediated expression of IP-10 in macrophages. These events in turn may lead to an increasing feed-forward loop of chronic inflammation.  相似文献   

3.
Ca(2+) and Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN) have been known to play crucial roles in immune response and inflammation. Using mouse peritoneal macrophages and RAW 264.7 macrophage cells, we demonstrated that LPS mobilized intracellular free Ca(2+) and induced CN phosphatase activity. iNOS expression and NO secretion in response to LPS were suppressed by Ca(2+) antagonists (TMB-8, BAPTA/AM, and nifedipine) and CN inhibitor (cyclosporin A). Transient expression of constitutively active CN in mouse peritoneal macrophages and RAW 264.7 macrophages strongly activated NF-kappaB, a key mediator of iNOS expression. We also found that CN mediates NF-kappaB activation via IkappaB-alpha hyperphosphorylation and degradation. Overexpression of dominant negative mutant of IKKalpha and -beta demonstrates that only IKKbeta is the target for CN. These results indicate that CN is required for full iNOS expression and the effective activation of NF-kappaB in RAW 264.7 and peritoneal macrophages.  相似文献   

4.
5.
Fan YH  Zhao LY  Zheng QS  Dong H  Wang HC  Yang XD 《Life sciences》2007,81(4):327-335
Previous studies have shown that arginine vasopressin (AVP) promotes myocardial fibrosis (MF), whereas nitric oxide (NO) inhibits MF. Cardiac fibroblasts (CFs) are the main target cells of MF. However, the modulatory effect of AVP on NO production in CFs and the role of this effect in MF are still unknown. In the present study, CFs obtained from Sprague-Dawley rats were stimulated with or without AVP and pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of nuclear factor kappa-B (NF-kappaB). NO production and NOS activity were detected with absorption spectrometry, inducible nitric oxide synthase (iNOS) protein with Western blot analysis, iNOS mRNA with real-time PCR, CF collagen synthesis with [(3)H]proline incorporation, and NF-kappaB activation with immunofluorescence staining and Western blot analysis. The results showed that AVP increased NO production in a dose- and time-dependent manner, with maximal effects at 10(-7) mol/l after 24-h stimulation. AVP also increased NOS activity, protein and mRNA levels of iNOS in a coincident manner. Furthermore, AVP also increased CF collagen synthesis in a dose- and time-dependent manner. In addition, it was found that NF-kappaB was activated by AVP, and that PDTC could inhibit NO production, NOS activity, protein and mRNA levels of iNOS stimulated by AVP in a dose-dependent manner. The inhibitory effects of PDTC on NF-kappaB translocation were coincident with the effects of PDTC on iNOS-NO system activity. It is suggested that AVP increases NO production via the regulation of iNOS gene expression, and the upregulation of iNOS gene expression stimulated by AVP is mediated through NF-kappaB activation. NO production induced by AVP may counteract the profibrotic effects of AVP, thus the development of MF perhaps depends on the balance between profibrotic AVP and antifibrotic NO effects on MF.  相似文献   

6.
Chiu FL  Lin JK 《FEBS letters》2008,582(16):2407-2412
We use the LPS-stimulated macrophage as a model of inflammation to investigate the anti-inflammatory effects of tomatidine and solasodine, whose structures resemble glucocorticoids. We found that tomatidine exhibited a more potent anti-inflammatory effect than solasodine. Tomatidine could decrease inducible nitric oxide synthase and cyclooxygenase-2 expression through suppression of I-kappaBalpha phosphorylation, NF-kappaB nuclear translocation and JNK activation, which in turn inhibits c-jun phosphorylation and Oct-2 expression. Here, we demonstrate that tomatidine acts as an anti-inflammatory agent by blocking NF-kappaB and JNK signaling, and may possibly be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.  相似文献   

7.
8.
9.
Cytokine treatment stimulates the IkappaB kinases, IKKalpha and IKKbeta, which phosphorylate the IkappaB proteins, leading to their degradation and activation of NF-kappaB regulated genes. A clear definition of the specific roles of IKKalpha and IKKbeta in activating the NF-kappaB pathway and the upstream kinases that regulate IKK activity remain to be elucidated. Here, we utilized small interfering RNAs (siRNAs) directed against IKKalpha, IKKbeta and the upstream regulatory kinase TAK1 in order to better define their roles in cytokine-induced activation of the NF-kappaB pathway. In contrast to previous results with mouse embryo fibroblasts lacking either IKKalpha or IKKbeta, which indicated that only IKKbeta is involved in cytokine-induced NF-kappaB activation, we found that both IKKalpha and IKKbeta were important in activating the NF-kappaB pathway. Furthermore, we found that the MAP3K TAK1, which has been implicated in IL-1-induced activation of the NF-kappaB pathway, was also critical for TNFalpha-induced activation of the NF-kappaB pathway. TNFalpha activation of the NF-kappaB pathway is associated with the inducible binding of TAK1 to TRAF2 and both IKKalpha and IKKbeta. This analysis further defines the distinct in vivo roles of IKKalpha, IKKbeta and TAK1 in cytokine-induced activation of the NF-kappaB pathway.  相似文献   

10.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappaB activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified a novel protein designated as NKAP. Although NKAP interacts with RIP in yeast, NKAP does not interact with RIP in mammalian cells in co-immunoprecipitation experiments. When overexpressed in 293 cells, NKAP activated NF-kappaB in a dose-dependent manner. Moreover, down-regulation of NKAP by antisense RNA significantly inhibited TNF- and IL-1-induced NF-kappaB activation. Immunofluorescent staining indicated that NKAP was localized in the nucleus. Our findings suggest that NKAP is a novel nuclear regulator of TNF- and IL-1-induced NF-kappaB activation.  相似文献   

11.
12.
13.
Bacterial lipopolysaccharide (LPS) initiates multiple signaling events in vascular endothelial cells that can result in activation and/or cell death. LPS-induced activation of endothelial cells elicits a wide array of vascular endothelial responses, many of which are dependent on NF-kappaB activation. Several of the signaling molecules that mediate LPS-induced NF-kappaB activation, including Tlr-4, MyD88, and IRAK-1, have been similarly reported to mediate LPS pro-apoptotic signaling. Recently, a new signaling molecule, TIRAP, has been identified that mediates LPS-induced NF-kappaB signaling in monocytes and macrophages. Using a TIRAP dominant negative construct, we have identified a role for TIRAP in mediating LPS-induced NF-kappaB activation and apoptosis in human endothelial cells. These data identify TIRAP as a dual functioning signaling molecule and suggest the presence of a MyD88-independent LPS signaling pathway in human endothelial cells.  相似文献   

14.
Jin HZ  Lee JH  Lee D  Hong YS  Kim YH  Lee JJ 《Phytochemistry》2004,65(15):2247-2253
Three guaianolide sesquiterpene lactones, 3alpha,4alpha-epoxyrupicolins C-E, together with six known sesquiterpenes, artemisolide, 3-methoxytanapartholide, deacetyllaurenobiolide, moxartenolide as well as arteminolides B and D were isolated by bioassay-guided fractionation from the methanol extract of the aerial parts of Artemisia sylvatica using the NF-kappaB mediated reporter gene assay. All isolated compounds displayed inhibitory activity on the LPS-induced NF-kappaB activation, NO production, and TNF-alpha production with IC50 values of 0.49-7.17, 1.46-6.16, and 3.19-27.76 microM, respectively, in RAW264.7 cells. It was also established that arteminolide B suppressed the expression of NF-kappaB target genes such as iNOS and COX-2. This is the first report of NF-kappaB inhibitory activities of these compounds and supports the pharmacological use of Artemisia sylvatica, which has been employed as an herbal medicine for the treatment of inflammation.  相似文献   

15.
16.
de Lima TM  de Sa Lima L  Scavone C  Curi R 《FEBS letters》2006,580(13):3287-3295
Modulation of macrophage functions by fatty acids (FA) has been studied by several groups, but the effect of FA on nitric oxide production by macrophages has been poorly examined. In the present study the effect of palmitic, stearic, oleic, linoleic, arachidonic, docosahexaenoic and eicosapentaenoic acids on NF-kappaB activity and NO production in J774 cells (a murine macrophage cell line) was investigated. All FA tested stimulated NO production at low doses (1-10 microM) and inhibited it at high doses (50-200 microM). An increase of iNOS expression and activity in J774 cells treated with a low concentration of FA (5 microM) was observed. The activity of NF-kappaB was time-dependently enhanced by the FA treatment. The inhibitory effect of FA on NO production may be due to their cytotoxicity, as observed by loss of membrane integrity and/or increase of DNA fragmentation in cells treated for 48 h with high concentrations. The results indicate that, at low concentrations FA increase NO production by J774 cells, whereas at high concentrations they cause cell death.  相似文献   

17.
18.
19.
Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-kappaB signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293(CTT)), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-kappaB nuclear levels and NF-kappaB-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-kappaB promoter activation was mediated by PKCalpha because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293(CTT) cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-kappaB inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKCalpha-mediated NF-kappaB signalling and cell survival.  相似文献   

20.
This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor l-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulates MAP kinase and NF-κB pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by l-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号