首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phosphonoacetaldehyde hydrolase (phosphonatase) from Bacillus cereus catalyzes hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) via a Schiff base intermediate formed with Lys53. A single turnover requires binding of Pald to the active site of the core domain, closure of the cap domain containing the Lys53 over the core domain, and dissociation of the products following catalysis. The ligand binding and dissociation steps occur from the "open conformer" (domains are separated and the active site is solvent-exposed), while catalysis occurs from the "closed conformer" (domains are bound together and the active site is sequestered from solvent). To test the hypothesis that bound substrate stabilizes the closed conformer, thus facilitating catalysis, the rates of chemical modification of Lys53 in the presence and absence of inert substrate and/or product analogues were compared. Acetylation of Lys53 with 2,4-dinitrophenylacetate (DNPA) resulted in the loss of enzyme activity. The pseudo-first-order rate constant for inactivation varied with pH. The pH profile of inactivation is consistent with a pK(a) of 9.3 for Lys53. The inhibitors tungstate and vinyl sulfonate, which are known to bind to active site residues comprising the core domain, protected Lys53 from acetylation. These results are consistent with a dynamic equilibrium between the open and closed conformations of phosphonatase and the hypothesis that ligand binding stabilizes the closed conformation required for catalytic turnover.  相似文献   

2.
Kraynov VS  Showalter AK  Liu J  Zhong X  Tsai MD 《Biochemistry》2000,39(51):16008-16015
The specific catalytic roles of two groups of DNA polymerase beta active site residues identified from crystal structures were investigated: residues possibly involved in DNA template positioning (Lys280, Asn294, and Glu295) and residues possibly involved in binding the triphosphate moiety of the incoming dNTP (Arg149, Ser180, Arg183, and Ser188). Eight site-specific mutants were constructed: K280A, N294A, N294Q, E295A, R149A, S180A, R183A, and S188A. Two-dimensional NMR analysis was employed to show that the global conformation of the mutants has not been perturbed significantly. Pre-steady-state kinetic analyses with single-nucleotide gapped DNA substrates were then performed to obtain the rate of catalysis at saturating dNTP (k(pol)), the apparent dissociation constant for dNTP (K(d)), catalytic efficiency k(pol)/K(d), and fidelity. Of the three template-positioning residues, Asn294 and Glu295 (but not Lys280) contribute significantly to k(pol). Taken together with other data, the results suggest that these two residues help to stabilize the transition state during catalysis even though they interact with the DNA template backbone rather than directly with the incoming dNTP or the opposite base on the template. Furthermore, the fidelity increases by up to 19-fold for N294Q due to differential k(pol) effects between correct and incorrect nucleotides. Of the four potential triphosphate-binding residues, Ser180 and Arg183 contribute significantly to k(pol) while the effects of R149A are relatively small and are primarily on K(d), and Ser188 appears to play a minimal role in the catalysis by Pol beta. These results identify several residues important for catalysis and quantitate the contributions of each of those residues. The functional data are discussed in relation to the prediction on the basis of available crystal structures.  相似文献   

3.
The crystal structure of the Escherichia coli DNA adenine methyltransferase (EcoDam) in a binary complex with the cofactor product S-adenosyl-L-homocysteine (AdoHcy) unexpectedly showed the bound AdoHcy in two alternative conformations, extended or folded. The extended conformation represents the catalytically competent conformation, identical to that of EcoDam-DNA-AdoHcy ternary complex. The folded conformation prevents catalysis, because the homocysteine moiety occupies the target Ade binding pocket. The largest difference between the binary and ternary structures is in the conformation of the N-terminal hexapeptide ((9)KWAGGK(14)). Cofactor binding leads to a strong change in the fluorescence of Trp(10), whose indole ring approaches the cofactor by 3.3A(.) Stopped-flow kinetics and AdoMet cross-linking studies indicate that the cofactor prefers binding to the enzyme after preincubation with DNA. In the presence of DNA, AdoMet binding is approximately 2-fold stronger than AdoHcy binding. In the binary complex the side chain of Lys(14) is disordered, whereas Lys(14) stabilizes the active site in the ternary complex. Fluorescence stopped-flow experiments indicate that Lys(14) is important for EcoDam binding of the extrahelical target base into the active site pocket. This suggests that the hexapeptide couples specific DNA binding (Lys(9)), AdoMet binding (Trp(10)), and insertion of the flipped target base into the active site pocket (Lys(14)).  相似文献   

4.
11S REGs (PA28s) are multimeric rings that bind proteasomes and stimulate peptide hydrolysis. Whereas REGalpha activates proteasomal hydrolysis of peptides with hydrophobic, acidic or basic residues in the P1 position, REGgamma only activates cleavage after basic residues. We have isolated REGgamma mutants capable of activating the hydrolysis of fluorogenic peptides diagnostic for all three active proteasome beta subunits. The most robust REGgamma specificity mutants involve substitution of Glu or Asp for Lys188. REGgamma(K188E/D) variants are virtually identical to REGalpha in proteasome activation but assemble into less stable heptamers/hexamers. Based on the REGalpha crystal structure, Lys188 of REGgamma faces the aqueous channel through the heptamer, raising the possibility that REG channels function as substrate-selective gates. However, covalent modification of proteasome chymotrypsin-like subunits by 125I-YL3-VS demonstrates that REGgamma(K188E)'s activation of all three proteasome active sites is not due to relaxed gating. We propose that decreased stability of REGgamma(K188E) heptamers allows them to change conformation upon proteasome binding, thus relieving inhibition of the CT and PGPH sites normally imposed by the wild-type REGgamma molecule.  相似文献   

5.
Conformational flexibility of PEP mutase   总被引:1,自引:0,他引:1  
Liu S  Lu Z  Han Y  Jia Y  Howard A  Dunaway-Mariano D  Herzberg O 《Biochemistry》2004,43(15):4447-4453
Previous work has indicated that PEP mutase catalyzes the rearrangement of phosphoenolpyruvate to phosphonopyruvate by a dissociative mechanism. The crystal structure of the mutase with Mg(II) and sulfopyruvate (a phosphonopyruvate analogue) bound showed that the substrate is anchored to the active site by the Mg(II), and shielded from solvent by a large loop (residues 115-133). Here, the crystal structures of wild-type and D58A mutases, in the apo state and in complex with Mg(II), are reported. In both unbound and Mg(II)-bound states, the active site is accessible to the solvent. The loop (residues 115-133), which in the enzyme-inhibitor complexes covers the active site cavity, is partially disordered or adopts a conformation that allows access to the cavity. In the apo state, the residues associated with Mg(II) binding are poised to accept the metal ion. When Mg(II) binds, the coordination is the same as that previously observed in the enzyme-Mg(II) sulfopyruvate complex, except that the coordination positions occupied by two ligand oxygen atoms are occupied by two water molecules. When the loop opens, three key active site residues are displaced from the active site, Lys120, Asn122, and Leu124. Lys120 mediates Mg(II) coordination. Asn122 and Leu124 surround the transferring phosphoryl group, and thus prevent substrate hydrolysis. Amino acid replacement of any one of these three loop residues results in a significant loss of catalytic activity. It is hypothesized that the loop serves to gate the mutase active site, interconverting between an open conformation that allows substrate binding and product release and a closed conformation that separates the reaction site from the solvent during catalysis.  相似文献   

6.
Pyruvate dehydrogenase (E1), an alpha(2)beta(2) tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of betaW135, alphaP188, alphaM181, alphaH15, and alphaR349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: betaW135 is in the center of the hydrophobic interaction between beta and beta' subunits; alphaP188 and alphaM181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alphaH15 is necessary for the organization of the N-terminus of alpha and alpha' subunits; and alphaR349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.  相似文献   

7.
General acid catalysis in protein tyrosine phosphatases (PTPases) is accomplished by a conserved Asp residue, which is brought into position for catalysis by movement of a flexible loop that occurs upon binding of substrate. With the PTPase from Yersinia, we have examined the effect on general acid catalysis caused by mutations to two conserved residues that are integral to this conformation change. Residue Trp354 is at a hinge of the loop, and Arg409 forms hydrogen bonding and ionic interactions with the phosphoryl group of substrates. Trp354 was mutated to Phe and to Ala, and residue Arg409 was mutated to Lys and to Ala. The four mutant enzymes were studied using steady state kinetics and heavy-atom isotope effects with the substrate p-nitrophenyl phosphate. The data indicate that mutation of the hinge residue Trp354 to Ala completely disables general acid catalysis. In the Phe mutant, general acid catalysis is partially effective, but the proton is only partially transferred in the transition state, in contrast to the native enzyme where proton transfer to the leaving group is virtually complete. Mutation of Arg409 to Lys has a minimal effect on the K(m), while this parameter is increased 30-fold in the Ala mutant. The k(cat) values for R409K and for R409A are about 4 orders of magnitude lower than that for the native enzyme. General acid catalysis is rendered inoperative by the Lys mutation, but partial proton transfer during catalysis still occurs in the Ala mutant. Structural explanations for the differential effects of these mutations on movement of the flexible loop that enables general acid catalysis are presented.  相似文献   

8.
Altered inositol metabolism is implicated in a number of diabetic complications. The first committed step in mammalian inositol catabolism is performed by myo-inositol oxygenase (MIOX), which catalyzes a unique four-electron dioxygen-dependent ring cleavage of myo-inositol to D-glucuronate. Here, we present the crystal structure of human MIOX in complex with myo-inosose-1 bound in a terminal mode to the MIOX diiron cluster site. Furthermore, from biochemical and biophysical results from N-terminal deletion mutagenesis we show that the N terminus is important, through coordination of a set of loops covering the active site, in shielding the active site during catalysis. EPR spectroscopy of the unliganded enzyme displays a two-component spectrum that we can relate to an open and a closed active site conformation. Furthermore, based on site-directed mutagenesis in combination with biochemical and biophysical data, we propose a novel role for Lys(127) in governing access to the diiron cluster.  相似文献   

9.
Indoleglycerol phosphate synthase catalyzes the ring closure of an N-alkylated anthranilate to a 3-alkyl indole derivative, a reaction requiring Lewis acid catalysis in vitro. Here, we investigated the enzymatic reaction mechanism through X-ray crystallography of complexes of the hyperthermostable enzyme from Sulfolobus solfataricus with the substrate 1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate, a substrate analogue and the product indole-3-glycerol phosphate. The substrate and the substrate analogue are bound to the active site in a similar, extended conformation between the previously identified phosphate binding site and a hydrophobic pocket for the anthranilate moiety. This binding mode is unproductive, because the carbon atoms that are to be joined are too far apart. The indole ring of the bound product resides in a second hydrophobic pocket adjacent to that of the anthranilate moiety of the substrate. Although the hydrophobic moiety of the substrate moves during catalysis from one hydrophobic pocket to the other, the triosephosphate moiety remains rigidly bound to the same set of hydrogen-bonding residues. Simultaneously, the catalytically important residues Lys53, Lys110 and Glu159 maintain favourable distances to the atoms of the ligand undergoing covalent changes. On the basis of these data, the structures of two putative catalytic intermediates were modelled into the active site. This new structural information and the modelling studies provide further insight into the mechanism of enzyme-catalyzed indole synthesis. The charged epsilon-amino group of Lys110 is the general acid, and the carboxylate group of Glu159 is the general base. Lys53 guides the substrate undergoing conformational transitions during catalysis, by forming a salt-bridge to the carboxylate group of its anthranilate moiety.  相似文献   

10.
Thymidylate synthase (TS) catalyzes methylation of dUMP to dTMP and is the target of cancer chemotherapeutic agents (e.g. 5-fluorouracil). Here, we used error-prone PCR to mutagenize the full-length human TS cDNA and then selected mutants resistant to 5-fluorodeoxyuridine in a bacterial complementation system. We found that resistant mutants contained 1-5 amino acid substitutions and that these substitutions were located along the entire length of the polypeptide. Mutations were frequent near the active site Cys(195) and in the catalytically important Arg(50) loop; however, many mutations were also distributed throughout the remainder of the cDNA. Mutants containing a single amino acid replacement identified the following 14 residues as unreported sites of resistance: Glu(23), Thr(51), Thr(53), Val(84), Lys(93), Asp(110), Asp(116), Pro(194), Ser(206), Met(219), His(250), Asp(254), Tyr(258), and Lys(284). Many of these residues are distant from the active site and/or have no documented function in catalysis or resistance. We conclude that mutations distributed throughout the linear sequence and three-dimensional structure of human TS can confer resistance to 5-fluorodeoxyuridine. Our findings imply that long range interactions within proteins affect catalysis at the active site and that mutations at a distance can yield variant proteins with desired properties.  相似文献   

11.
ATP-dependent DNA ligases, NAD(+)-dependent DNA ligases, and GTP-dependent RNA capping enzymes are members of a covalent nucleotidyl transferase superfamily defined by a common fold and a set of conserved peptide motifs. Here we examined the role of nucleotidyl transferase motif V ((184)LLKMKQFKDAEAT(196)) in the nick joining reaction of Chlorella virus DNA ligase, an exemplary ATP-dependent enzyme. We found that alanine substitutions at Lys(186), Lys(188), Asp(192), and Glu(194) reduced ligase specific activity by at least an order of magnitude, whereas substitutions at Lys(191) and Thr(196) were benign. The K186A, D192A, and E194A changes had no effect on the rate of single-turnover nick joining by preformed ligase-adenylate but affected subsequent rounds of nick joining at the ligase adenylation step. Conservative substitutions K186R, D192E, and E194D partially restored activity, whereas K186Q, D192N, and E194Q substitutions did not. Alanine mutation of Lys(188) elicited distinctive catalytic defects, whereby single-turnover nick joining by K188A-adenylate was slowed by an order of magnitude, and high levels of the DNA-adenylate intermediate accumulated. The rate of phosphodiester bond formation at a pre-adenylated nick (step 3 of the ligation pathway) was slowed by the K188A change. Replacement of Lys(188) by arginine reversed the step 3 arrest, whereas glutamine substitution was ineffective. Gel-shift analysis showed that the Lys(188) mutants bound stably to DNA-adenylate. We infer that Lys(188) is involved in the chemical step of phosphodiester bond formation.  相似文献   

12.
This work is aimed at understanding how protein structure and conformation regulate activity and allosteric communication in the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium. Previous crystallographic and kinetic results suggest that both monovalent cations and a salt bridge between alpha subunit Asp(56) and beta subunit Lys(167) play allosteric roles. Here we show that mutation of either of these salt bridging residues produced deleterious effects that could be repaired by increased temperature in combination with CsCl or with NaCl plus an alpha subunit ligand, alpha-glycerol 3-phosphate. Arrhenius plots of the activity data under these conditions were nonlinear. The same conditions yielded temperature-dependent changes in the equilibrium distribution of enzyme-substrate intermediates and in primary kinetic isotope effects. We correlate the results with a model in which the mutant enzymes are converted by increased temperature from a low activity, "open" conformation to a high activity, "closed" conformation under certain conditions. The allosteric ligand and different monovalent cations affected the equilibrium between the open and closed forms. The results suggest that alpha subunit Asp(56) and beta subunit Lys(167) are not essential for catalysis and for allosteric communication between the alpha and beta subunits but that their mutual interaction is important in stabilization of the active, closed form of the alpha(2)beta(2) complex.  相似文献   

13.
Granzyme K (GzmK) belongs to a family of trypsin-like serine proteases localized in electron dense cytoplasmic granules of activated natural killer and cytotoxic T-cells. Like the related granzymes A and B, GzmK can trigger DNA fragmentation and is involved in apoptosis. We expressed the Ser(195) --> Ala variant of human pro-GzmK in Escherichia coli, crystallized it, and determined its 2.2-A x-ray crystal structure. Pro-GzmK possesses a surprisingly rigid structure, which is most similar to activated serine proteases, in particular complement factor D, and not their proforms. The N-terminal peptide Met(14)-Ile(17) projects freely into solution and can be readily approached by cathepsin C, the natural convertase of pro-granzymes. The pre-shaped S1 pocket is occupied by the ion paired residues Lys(188B)-Asp(194) and is hence not available for proper substrate binding. The Ser(214)-Cys(220) segment, which normally provides a template for substrate binding, bulges out of the active site and is distorted. With analogy to complement factor D, we suggest that this strand will maintain its non-productive conformation in mature GzmK, mainly due to the unusual residues Gly(215), Glu(219), and Val(94). We hypothesize that GzmK is proteolytically active only toward specific, as yet unidentified substrates, which upon approach transiently induce a functional active-site conformation.  相似文献   

14.
The protonation states of the two active‐site lysines (Lys69 and Lys235) of PBP 6 of Escherichia coli were explored to understand the active site chemistry of this enzyme. Each lysine was individually mutated to cysteine, and the resultant two mutant proteins were purified to homogeneity. Each protein was denatured, and its cysteine was chemically modified to produce an S‐aminoethylated cysteine (γ‐thialysine) residue. Following renaturation, the evaluation of the kinetics of the dd ‐carboxypeptidase activity of PBP 6 as a function of pH was found consistent with one lysine in its free‐base (Lys69) and the other in the protonated state (Lys235) for optimal catalysis. The experimental estimates for their pKa values were compared with the pKa values calculated computationally, using molecular‐dynamics simulations and a thermodynamic cycle. Study of the γ‐thialysine69 showed that lysine at position 69 influenced the basic limb of catalysis, consistent with the fact that the two lysine side chains are in proximity to each other in the active site. Based on these observations, a reaction sequence for PBP 6 is proposed, wherein protonated Lys235 serves as the electrostatic substrate anchor and Lys69 as the conduit for protons in the course of the acylation and deacylation half‐reactions. Proteins 2014; 82:1348–1358. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
S-Adenosylhomocysteine (AdoHcy) hydrolase catalyzes the reversible hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy), playing an essential role in modulating the cellular Hcy levels and regulating activities of a host of methyltransferases in eukaryotic cells. This enzyme exists in an open conformation (active site unoccupied) and a closed conformation (active site occupied with substrate or inhibitor) [Turner, M. A., Yang, X., Yin, D., Kuczera, K., Borchardt, R. T., and Howell, P. L. (2000) Cell Biochem. Biophys. 33, 101-125]. To investigate the binding of natural substrates during catalysis, the computational docking program AutoDock (with confirming calculations using CHARMM) was used to predict the binding modes of various substrates or inhibitors with the closed and open forms of AdoHcy hydrolase. The results have revealed that the interaction between a substrate and the open form of the enzyme is nonspecific, whereas the binding of the substrate in the closed form is highly specific with the adenine moiety of a substrate as the main recognition factor. Residues Thr57, Glu59, Glu156, Gln181, Lys186, Asp190, Met351, and His35 are involved in substrate binding, which is consistent with the crystal structure. His55 in the docked model appears to participate in the elimination of water from Ado through the interaction with the 5'-OH group of Ado. In the same reaction, Asp131 removes a proton from the 4' position of the substrate after the oxidation-reduction reaction in the enzyme. To identify the residues that bind the Hcy moiety, AdoHcy was docked to the closed form of AdoHcy hydrolase. The Hcy tail is predicted to interact with His55, Cys79, Asn80, Asp131, Asp134, and Leu344 in a strained conformation, which may lower the reaction barrier and enhance the catalysis rate.  相似文献   

16.
NMR spectroscopy of 13C-labeled human low density lipoprotein (LDL) has been employed to characterize the lysine (Lys) residues in apo B-100. Reductive methylation with [13C]formaldehyde converts up to two-thirds of the Lys to the dimethylamino derivative; this pool of Lys is exposed at the surface of the LDL particle. The [13C]dimethyl-Lys which are visualized exhibit resonances at chemical shifts of 42.8 and 43.2 ppm (pH 7.6) indicating that they exist in two different microenvironments; this is a reflection of the native conformation of apo B associated with lipid, because the labeled, reduced, and alkylated protein gives a single resonance when dissolved in 7 M guanidine hydrochloride. The pH dependences of the Lys chemical shifts indicate that the two types of Lys titrate with different pK values; "active" Lys have a pK of 8.9, while "normal" Lys have a pK of 10.5. About 53 active Lys and 172 normal Lys are exposed on the surface of LDL with the remaining 132 Lys which are present in the human apo B-100 molecule being buried and unavailable for methylation. Addition of paramagnetic ions indicates that the active and normal Lys have different exposures to the aqueous phase; apparently this is a reflection of folding of the apo B molecule. The relative involvement of active and normal Lys in binding of apo B-100 to the LDL receptor on fibroblasts was explored by measuring the decrease in receptor binding as a function of the degree of methylation of the two types of Lys. Upper limits of 21 active and 31 normal Lys in the entire apo B-100 molecule are involved in the binding of LDL to the receptor. It is likely that these Lys are located in domains of apo B which contain clusters of basic amino acid residues and also bind heparin. If the sequence corresponding to apo B-48 (residues 1-2151) which does not bind to the receptor is excluded, then the above limits are halved; an upper limit of 10 active Lys may be particularly involved in receptor binding.  相似文献   

17.
Dehydroquinate dehydratase (DHQD) catalyzes the third reaction in the biosynthetic shikimate pathway. Type I DHQDs are members of the greater aldolase superfamily, a group of enzymes that contain an active site lysine that forms a Schiff base intermediate. Three residues (Glu86, His143, and Lys170 in the Salmonella enterica DHQD) have previously been proposed to form a triad vital for catalysis. While the roles of Lys170 and His143 are well defined—Lys170 forms the Schiff base with the substrate and His143 shuttles protons in multiple steps in the reaction—the role of Glu86 remains poorly characterized. To probe Glu86′s role, Glu86 mutants were generated and subjected to biochemical and structural study. The studies presented here demonstrate that mutant enzymes retain catalytic proficiency, calling into question the previously attributed role of Glu86 in catalysis and suggesting that His143 and Lys170 function as a catalytic dyad. Structures of the Glu86Ala (E86A) mutant in complex with covalently bound reaction intermediate reveal a conformational change of the His143 side chain. This indicates a predominant steric role for Glu86, to maintain the His143 side chain in position consistent with catalysis. The structures also explain why the E86A mutant is optimally active at more acidic conditions than the wild‐type enzyme. In addition, a complex with the reaction product reveals a novel, likely nonproductive, binding mode that suggests a mechanism of competitive product inhibition and a potential strategy for the design of therapeutics.  相似文献   

18.
19.
The vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis is heterologously expressed to high levels in the yeast Saccharomyces cerevisiae. Characterization of the recombinant enzyme reveals that this behaves very similar to the native chloroperoxidase. Site-directed mutagenesis is performed on four highly conserved active site residues to examine their role in catalysis. When the vanadate-binding residue His(496) is changed into an alanine, the mutant enzyme loses the ability to bind vanadate covalently resulting in an inactive enzyme. The negative charges on the vanadate oxygens are compensated by hydrogen bonds with the residues Arg(360), Arg(490), and Lys(353). When these residues are changed into alanines the mutant enzymes lose the ability to effectively oxidize chloride but can still function as bromoperoxidases. A general mechanism for haloperoxidase catalysis is proposed that also correlates the kinetic properties of the mutants with the charge and the hydrogen-bonding network in the vanadate-binding site.  相似文献   

20.
3-Phosphoglycerate kinase (PGK) is a two-domain hinge-bending enzyme. It is still unclear how the geometry of the active site is formed during domain closure and how the catalytic residues are brought into the optimal position for the reaction. Comparison of the three-dimensional structures in various open and closed conformations suggests a large (10 A) movement of Lys 215 during domain closure. This change would be required for direct participation of this side chain in both the catalyzed phospho transfer and the special anion-caused activation. To test the multiple roles of Lys 215, two mutants (K215A and K215R) were constructed from human PGK and characterized in enzyme kinetic and substrate binding studies. For comparison, mutants (R38A and R38K) of the known essential residue, Arg 38, were also produced. Drastic decreases (1500- and 500-fold, respectively), as in the case of R38A, were observed in the kcat values of mutants K215A and K215R, approving the essential catalytic role of Lys 215. In contrast, the R38K mutation caused an only 1.5-fold decrease in activity. This emphasizes the importance of a very precise positioning of Lys 215 in the active site, in addition to its positive charge. The side chain of Lys 215 is also responsible for the substrate and anion-dependent activation, since these properties are abolished upon mutation. Among the kinetic constants mainly the Km values of MgATP and 1,3-BPG are increased (approximately 20- and approximately 8-fold, respectively) in the case of the neutral K215A mutant, evidence of the interaction of Lys 215 with the transferring phospho group in the functioning complex. Weakening of MgATP binding (a moderate increase in Kd), but not of MgADP binding, upon mutation indicates an initial weak interaction of Lys 215 with the gamma-phosphate already in the nonfunctioning open conformation. Thus, during domain closure, Lys 215 possibly moves together with the transferring phosphate; meanwhile, this group is being positioned properly for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号