首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcium and cyclic AMP form the cornerstones of two ancient signaling systems represented in nearly every kingdom of life. Not surprisingly, these old and ubiquitous messenger molecules have co-evolved multiple means to regulate one another. Zhang et al. describe a new twist on this theme related to the intimate union between the calcium-activated adenylyl cyclase, AC8, and the store-operated Ca2+ channel, Orai1.  相似文献   

2.
The neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) plays a pivotal oncogenic role in various types of human cancers. However, the function of NEDD4 in bladder cancer has not been fully investigated. In the present study, we aim to explore whether NEDD4 governs cell proliferation, apoptosis, migration, and invasion in bladder cancer cells. Our results showed that downregulation of NEDD4 suppressed cell proliferation in bladder cancer cells. Moreover, we found that inhibition of NEDD4 significantly induced cell apoptosis. Furthermore, downregulation of NEDD4 retarded cell migration and invasion. Notably, overexpression of NEDD4 enhanced cell growth and inhibited apoptosis. Consistently, upregulation of NEDD4 promoted cell migration and invasion in bladder cancer cells. Mechanically, our Western blotting results revealed that downregulation of NEDD4 activated PTEN and inhibited Notch-1 expression, whereas upregulation of NEDD4 reduced PTEN level and increased Notch-1 level in bladder cancer cells. Our findings indicated that NEDD4 exerts its oncogenic function partly due to regulation of PTEN and Notch-1 in bladder cancer cells. These results further revealed that targeting NEDD4 could be a useful approach for the treatment of bladder cancer.  相似文献   

3.
The well recognized activities of the mammalian centrosome--microtubule nucleation, duplication, and organization of the primary cilium--are under the control of the cell cycle. However, the centrosome is more than just a follower of the cell cycle; it can also be essential for the cell to transit G1 and enter S phase. How the centrosome influences G1 progression is a mystery.  相似文献   

4.
GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding proteins) are a family of monomeric clathrin adaptor proteins that are conserved from yeasts to humans. Data published during the past four years have provided detailed pictures of the localization, domain organization and structure-function relationships of GGAs. GGAs possess four conserved functional domains, each of which interacts with cargo proteins including mannose 6-phosphate receptors, the small GTPase ARF, clathrin, or accessory proteins including Rabaptin-5 and gamma-synergin. Together with or independent of the adaptor protein complex AP-1, GGAs regulate selective transport of cargo proteins, such as mannose 6-phosphate receptors, from the trans-Golgi network to endosomes mediated by clathrin-coated vesicles.  相似文献   

5.
Recent data suggest that the adhesion docking protein NEDD9/HEF1/Cas-L is a critical regulator of adhesion-dependent signalling pathways during mammary tumour development. Multiple phosphorylation modifications of NEDD9 regulate interaction with downstream protein partners, thus the regulation of NEDD9 phospho-forms is an important point of control for NEDD9 function. As estradiol (E2) plays a central role in the development and progression of breast cancer, we have investigated NEDD9 phospho-form regulation in MCF-7 estrogen receptor (ER)-positive breast cancer cells in response to estrogen. We find that levels of the 105-kDa NEDD9 phospho-form are significantly increased after 3 days of estrogen exposure, and this is suppressed by the anti-estrogen tamoxifen. Analysis of protein decay kinetics following treatment with the protein synthesis inhibitor cycloheximide indicates that increased 105-kDa levels are due to a slower rate of protein decay. Moreover, exogenous expression of NEDD9 failed to induce spreading in the presence of E2, and this was reversed by tamoxifen treatment. Finally, we show that the 105-kDa NEDD9 phospho-form appears to predominate in ER-positive versus ER-negative breast cancer cell lines. Taken together, our results suggest that estradiol may suppress phospho-form-specific functions of NEDD9.  相似文献   

6.
Protons at the gate: DEG/ENaC ion channels help us feel and remember   总被引:13,自引:0,他引:13  
Bianchi L  Driscoll M 《Neuron》2002,34(3):337-340
The DEG/ENaC ion channel family contributes to channels of striking functional diversity. Neuronally expressed family members include the C. elegans degenerins that mediate touch and are thought to be mechanically gated, and the mammalian ASICs, which are gated by protons. ASICs affect a range of sensory functions that includes perception of gentle touch, harsh touch, heat, sour taste, and pain. Family member ASIC1 is now implicated in long-term potentiation, suggesting that minute fluxes in synaptic pH may activate ASICs to enhance learning.  相似文献   

7.
The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.  相似文献   

8.
9.
Insulin increases the exocytosis of many soluble and membrane proteins in adipocytes. This may reflect a general effect of insulin on protein export from the trans Golgi network. To test this hypothesis, we have compared the trafficking of the secreted serine protease adipsin and the integral membrane proteins GLUT4 and transferrin receptors in 3T3-L1 adipocytes. We show that adipsin is secreted from the trans Golgi network to the endosomal system, as ablation of endosomes using transferrin-HRP conjugates strongly inhibited adipsin secretion. Phospholipase D has been implicated in export from the trans Golgi network, and we show that insulin stimulates phospholipase D activity in these cells. Inhibition of phospholipase D action with butan-1-ol blocked adipsin secretion and resulted in accumulation of adipsin in trans Golgi network-derived vesicles. In contrast, butan-1-ol did not affect the insulin-stimulated movement of transferrin receptors to the plasma membrane, whereas this was abrogated following endosome ablation. GLUT4 trafficking to the cell surface does not utilise this pathway, as insulin-stimulated GLUT4 translocation is still observed after endosome ablation or inhibition of phospholipase D activity. Immunolabelling revealed that adipsin and GLUT4 are predominantly localised to distinct intracellular compartments. These data suggest that insulin stimulates the activity of the constitutive secretory pathway in adipocytes possibly by increasing the budding step at the TGN by a phospholipase D-dependent mechanism. This may have relevance for the secretion of other soluble molecules from these cells. This is not the pathway employed to deliver GLUT4 to the plasma membrane, arguing that insulin stimulates multiple pathways to the cell surface in adipocytes.  相似文献   

10.
11.
PTEN is one of the most frequently mutated or deleted tumor suppressors in human cancers. NEDD4-1 was recently identified as the E3 ubiquitin ligase for PTEN; however, a number of important questions remain regarding the role of ubiquitination in regulating PTEN function and the mechanisms by which PTEN ubiquitination is regulated. In the present study, we demonstrated that p34, which was identified as a binding partner of NEDD4-1, controls PTEN ubiquitination by regulating NEDD4-1 protein stability. p34 interacts with the WW1 domain of NEDD4-1, an interaction that enhances NEDD4-1 stability. Expression of p34 promotes PTEN poly-ubiquitination, leading to PTEN protein degradation, whereas p34 knockdown results in PTEN mono-ubiquitination. Notably, an inverse correlation between PTEN and p34/NEDD4-1 levels was confirmed in tumor samples from colon cancer patients. Thus, p34 acts as a key regulator of the oncogenic behavior of NEDD4-1 and PTEN.  相似文献   

12.
Lead from automotive sources in roadside soil and vegetation is found to follow a double exponential function of the following form: Pb = A1 ek1D + A2 ek2D. The terms A1 and A2 are linear functions of average daily traffic volume. The two exponents are assumed to represent two families of particles of different sizes. The larger particles are deposited within about 5 m of the roadside and are relatively inert in the soil. The smaller particles settle more slowly and are deposited within about 100 m of the roadside. Based on the differences between the relative lead content of the soil and vegetation attributable to the two exponents, the lead contained in the smaller particles is assumed to be more soluble than that of the larger ones. An estimated 72–76% of the historical lead deposited on the soil has been lost from the surface 10 cm of soil.  相似文献   

13.
To address how the highly stereotyped retinotectal pathway develops in zebrafish, we used fixed-tissue and time-lapse imaging to analyze morphology and behavior of wild-type and mutant retinal growth cones. Wild-type growth cones increase in complexity and pause at the midline. Intriguingly, they make occasional ipsilateral projections and other pathfinding errors, which are always eventually corrected. In the astray/robo2 mutant, growth cones are larger and more complex than wild-type. astray axons make midline errors not seen in wild-type, as well as errors both before and after the midline. astray errors are rarely corrected. The presumed Robo ligands Slit2 and Slit3 are expressed near the pathway in patterns consistent with their mediating pathfinding through Robo2. Thus, Robo2 does not control midline crossing of retinal axons, but rather shapes their pathway, by both preventing and correcting pathfinding errors.  相似文献   

14.
PTEN (phosphatase and tensin homologue deleted on chromosome 10), a potent tumour suppressor and multifunctional signalling protein, is under intricate regulation. In the present study, we have investigated the mechanism and regulation of PTEN ubiquitination catalysed by NEDD4-1 (neural-precursor-cell-expressed, developmentally down-regulated 4-1), a ubiquitin ligase for PTEN we identified recently. Using the reconstituted assay and cellular analysis, we demonstrated that NEDD4-1-mediated PTEN ubiquitination depends on its intact HECT (homologous to E6-associated protein C-terminus) domain. Instead of using its WW domains (protein-protein interaction domains containing two conserved tryptophan residues) as a protein interaction module, NEDD4-1 interacts with PTEN through its N-terminal region containing a C2 domain as well as the HECT domain. Strikingly, we found that a C-terminal truncated PTEN fragment binds to NEDD4-1 with higher affinity than the full-length PTEN, suggesting an intrinsic inhibitory effect of the PTEN C-terminus on PTEN-NEDD4-1 interaction. Moreover, the C-terminal truncated PTEN is more sensitive to NEDD4-1-mediated ubiquitination and degradation. Therefore the present study reveals that the C-terminus of PTEN plays a critical role in stabilizing PTEN via antagonizing NEDD4-1-induced PTEN protein decay; conversely, truncation of the PTEN C-terminus results in rapid NEDD4-1-mediated PTEN degradation, a possible mechanism accounting for attenuation of PTEN function by certain PTEN mutations in human cancers.  相似文献   

15.
The physiologic function of an ion pump is determined, in part, by its subcellular localization and by the cellular mechanisms that modulate its activity. The Na,K-ATPase and the gastric H,K-ATPase are two closely related members of the P-type family of ion transporting ATPases. Despite their homology, these pumps are sorted to different domains in polarized epithelial cells and their enzymatic activities are subject to distinct regulatory pathways. The molecular signals responsible for these properties have begun to be elucidated. It appears that a complex array of inter- and intra-molecular interactions govern these proteins' trafficking, distribution and catalytic capacity.  相似文献   

16.
Inherited modifications in protein structure frequently cause a loss-of-function by interfering with protein synthesis, transport, or stability. For the obesity-linked melanocortin-4 receptor (MC4R) and other G protein-coupled receptors, many mutants are intracellular retained. The biogenesis and trafficking of G protein-coupled receptors are regulated by multiple factors, including molecular chaperone networks. Here, we have investigated the ability of the cytosolic cognate 70-kDa heat-shock protein (Hsc70) chaperone system to modulate cell surface expression of MC4R. Clinically occurring MC4R mutants S58C, P78L, and D90N were demonstrated to have reduced trafficking to the plasma membrane and to be retained at the endoplasmic reticulum (ER). Analyses by fluorescence recovery after photobleaching revealed that the mobility of MC4R mutant protein at the ER was reduced, implying protein misfolding. In cells expressing MC4R, overexpression of Hsc70 resulted in increased levels of wild-type and mutant receptors at the cell surface. MC4R and Hsc70 coimmunoprecipitated, and fluorescence recovery after photobleaching analyses showed that increasing cellular levels of Hsc70 promoted the mobility of ER retained MC4R. Moreover, expression of HSJ1b, a cochaperone that enhances degradation of Hsc70 clients, reduced cellular levels of MC4R. Hsp70 and Hsp90 chaperone systems collaborate in the cellular processing of clients. For MC4R, inhibition of endogenous Hsp90 by geldanamycin reduced receptor levels. By contrast, expression of the Hsp90 cochaperone Aha1 (activator of Hsp90 ATPase) increased cellular levels of MC4R. Finally, we demonstrate that signaling of intracellular retained MC4R mutants is increased in cells overexpressing Hsc70. These data indicate that cytosolic chaperone systems can facilitate rescue of intracellular retained MC4R by improving folding. They also support proteostasis networks as a potential target for MC4R-linked obesity.  相似文献   

17.
18.
Samuels L  McFarlane HE 《Protoplasma》2012,249(Z1):S19-S23
Plant cell wall secretion is the result of dynamic vesicle fusion events at the plasma membrane. The importance of the lipid bilayer environment of the plasma membrane and its interactions with the endomembrane system through vesicle traffic are well recognized. Recent advances in yeast molecular biology and biochemistry lead us to re-examine the hypothesis that non-vesicular traffic of lipids through close contact sites of the plasma membrane and endoplasmic reticulum could also be important in plant cell wall biosynthesis. Non-vesicular traffic is the extraction and transfer of individual lipid molecules from a donor bilayer to a target bilayer, usually with the assistance of lipid transfer proteins.  相似文献   

19.
Plant cell wall secretion is the result of dynamic vesicle fusion events at the plasma membrane. The importance of the lipid bilayer environment of the plasma membrane and its interactions with the endomembrane system through vesicle traffic are well recognized. Recent advances in yeast molecular biology and biochemistry lead us to re-examine the hypothesis that non-vesicular traffic of lipids through close contact sites of the plasma membrane and endoplasmic reticulum could also be important in plant cell wall biosynthesis. Non-vesicular traffic is the extraction and transfer of individual lipid molecules from a donor bilayer to a target bilayer, usually with the assistance of lipid transfer proteins.  相似文献   

20.
SUMMARY During the past decade, the terminology of heterochrony, heretofore consistent and workable, has become internally illogical and incoherent as the unfortunate result of an extension of terms, properly devised to describe shifts in developmental timing of shapes and features, to the rates and timings that cause these shifts. All the resulting, and extensive, confusion in the literature arises as a pure consequence of this error in logic and nomenclature, and not at all from disagreement about the important empirical questions described by this central concept and phenomenon in the integration of evolution and development. In particular, the claim that the same feature in human evolution (the paedomorphic shape of the human cranium) expresses either neoteny or the apparently opposite phenomenon of hypermorphosis only records the terminological error, and not any factual disagreement—for this neotenic feature has probably arisen by a prolongation of juvenile growth patterns inappropriately designated as "hypermorphosis of rate." I show that a prominent and unchallenged case of neoteny in fossil oysters arises by exactly the same evolutionary mode. When we restore the terminology of heterochrony by the "paedomorphic" intellectual event of dropping these inadaptive terminal accretions (the illogical extension of shape categories to describe rates), then the concept of heterochrony will again make proper distinctions by designating a clearly meaningful category of evolutionary changes originating by shifts in timing for features already present in ancestors. "It's not all heterochrony"—and this particular statement of "less is more" represents heterochrony's strength as an interesting subset with definite meaning, rather than an illogical hodge-podge apparently applicable to all phenomena, and therefore explaining nothing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号