首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review provides an analysis of recent data on the mechanisms of degradation of lignocellulosic materials and xenobiotics by basidiomycetes. Special attention is given to the analysis of the current state of research of ligninolytic enzymes and their involvement in the degradation ofxenobiotics. Data on the practical use of basidiomycetes for bioconversion of industrial wastes are systematized. The most promising areas of bioconversion technologies are considered, such as contaminated water purification (including wastewater), cleanup of soils contaminated with heavy metals and xenobiotics, and degradation of difficult-to-degrade substrates (lignin and lignocellulose wastes, low-energy coal, and synthetic polymers).  相似文献   

2.
Abstract An alkaline humic extract (HE) of a black calcareous forest mull was exposed to 36 fungal and 9 eubacterial isolates in liquid standing culture. At 21 d in fungi, and 4 d in bacteria, the groups of wood-degrading basidiomycetes, terricolous basidiomycetes, ectomycorrhizal fungi, soil-borne microfungi, and eubacteria had reduced the absorbance (A 340) of HE media by 57, 28, 19, 26 and 5%, respectively. Gel permeation chromatography revealed that the large humic acid molecules were more readily degraded than the smaller fulvic acid molecules and served as a sole source of carbon and energy. The more active HE degraders reduced the overall molecular weight of humic and fulvic acids by 0.25 to 0.47 kDa. They also reduced the chemical reactivity of HE to tetrazotized o-dianisidine, indicating the degradation of hydroxylated aromatic molecules (which are responsible for this reaction). Decreases in absorbance, molecular weight, and reactivity were caused by fungal manganese peroxidase, horseradish peroxidase, β-glucosidase, and abiotic oxidants such as H2O2 and Mn(III) acetate. It is concluded that fungi, some of which are propagated in contaminated soils to control xenobiotics, metabolize HE compounds enzymatically. They use enzymes which are also involved in the degradation of soil xenobiotics. Because of reductions in the molecular weight of HE, which is a potential carrier of heavy metal ions and xenobiotics, solubility and motility of humic substances in soil and surface waters are increased. Received: 4 March 1998; Accepted: 1 June 1998  相似文献   

3.
This study was conducted to generate information regarding the diversity of fungi inhabiting creosote-treated wood in a storage yard for crosstie wastes in Gwangmyeong, Korea. Additionally, the resistance to polycyclic aromatic hydrocarbons (PAHs) of indigenous fungi that mainly occupy creosote-treated wood was evaluated. We isolated fungi from the surface and inner area of crosstie wastes and identified them using a combination of traditional methods and molecular techniques. Overall, 179 isolates including 47 different species were isolated from 240 sampling sites. The identified fungal species included 23 ascomycetes, 19 basidiomycetes, and 5 zygomycetes. Three species, Alternaria alternata, Irpex lacteus, and Rhizomucor variabilis, were the most frequently isolated ascomycetes, basidiomycetes, and zygomycetes, respectively. The results of this study showed that there was a large difference in the fungal diversity between the surface and the inner area. Additionally, zygomycetes and ascomycetes were found to have a greater tolerance to PAHs than basidiomycetes. However, two basidiomycetes, Heterobasidion annosum and Schizophyllum commune, showed very high resistance to PAHs, even in response to the highest concentration (1,000 ppm), which indicates that these species may play a role in the degradation of PAHs.  相似文献   

4.
Aims: This study aimed to isolate and identify potential polycyclic aromatic hydrocarbon (PAH)‐degrading and/or metal‐tolerant fungi from PAH‐contaminated and metal‐contaminated soils. Methods and Results: Pyrene‐degrading fungi were isolated from contaminated soil and tested for metal (Cu, Zn and Pb) compound solubilization and metal accumulation. Three strains of Fusarium solani and one of Hypocrea lixii were able to degrade more than 60% of initial supplied pyrene (100 mg l?1) after 2 weeks. The isolates were grown on toxic metal (Cu, Pb and Zn)‐containing media: all isolates accumulated Cu in their mycelia to values ranging from c. 5·9 to 10·4 mmol per kg dry weight biomass. The isolates were also able to accumulate Zn (c. 3·7–7·2 mmol per kg dry weight biomass) from zinc phosphate‐amended media. None of the isolates accumulated Pb. Conclusions: These fungal isolates appear to show promise for use in bioremediation of pyrene or related xenobiotics and removal of copper and zinc from wastes contaminated singly or in combination with these substances. Significance and Impact of the Study: Microbial responses to mixed organic and inorganic pollution are seldom considered: this research highlights the abilities of certain fungal strains to interact with both xenobiotics and toxic metals and is relevant to other studies on natural attenuation and bioremediation of polluted sites.  相似文献   

5.
Lignocellulosic residues: Biodegradation and bioconversion by fungi   总被引:5,自引:0,他引:5  
The ability of fungi to degrade lignocellulosic materials is due to their highly efficient enzymatic system. Fungi have two types of extracellular enzymatic systems; the hydrolytic system, which produces hydrolases that are responsible for polysaccharide degradation and a unique oxidative and extracellular ligninolytic system, which degrades lignin and opens phenyl rings. Lignocellulosic residues from wood, grass, agricultural, forestry wastes and municipal solid wastes are particularly abundant in nature and have a potential for bioconversion. Accumulation of lignocellulosic materials in large quantities in places where agricultural residues present a disposal problem results not only in deterioration of the environment but also in loss of potentially valuable material that can be used in paper manufacture, biomass fuel production, composting, human and animal feed among others. Several novel markets for lignocellulosic residues have been identified recently. The use of fungi in low cost bioremediation projects might be attractive given their lignocellulose hydrolysis enzyme machinery.  相似文献   

6.
Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family''s role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s'' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative structural (gene and protein structure-level) and evolutionary analysis of a fungal P450 family.  相似文献   

7.
The genus Pleurotus comprises a group of edible ligninolytic mushrooms with medicinal properties and important biotechnological and environmental applications. The cultivation of Pleurotus spp is an economically important food industry worldwide which has expanded in the past few years. P. ostreatus is the third most important cultivated mushroom for food purposes. Nutritionally, it has unique flavor and aromatic properties; and it is considered to be rich in protein, fiber, carbohydrates, vitamins and minerals. Pleurotus spp are promising as medicinal mushrooms, exhibiting hematological, antiviral, antitumor, antibiotic, antibacterial, hypocholesterolic and immunomodulation activities. The bioactive molecules isolated from the different fungi are polysaccharides. One of the most important aspects of Pleurotus spp is related to the use of their ligninolytic system for a variety of applications, such as the bioconversion of agricultural wastes into valuable products for animal feed and other food products and the use of their ligninolytic enzymes for the biodegradation of organopollutants, xenobiotics and industrial contaminants. In this Mini-Review, we describe the properties of Pleurotus spp in relation to their biotechnological applications and potential.  相似文献   

8.
Isolation of Saprophytic Basidiomycetes from Soil   总被引:7,自引:3,他引:4       下载免费PDF全文
A method with the combined advantages of soil particle washing, selective inhibitors, and an indicator substrate was developed to isolate saprophytic basidiomycetes from soil. Organic particles were washed from soil and plated on a medium containing lignin, guaiacol, and benomyl, which reduced mold growth and allowed detection of basidiomycetes producing laccase or peroxidase. The 64 soil samples yielded 67 basidiomycete isolates, representing 51 groups on the basis of morphology and physiology. This method should facilitate investigations into the biodiversity of soil basidiomycetes and yield organisms that are useful in bioremediation of soils contaminated with pesticides or other recalcitrant aromatic compounds.  相似文献   

9.
Degradation of organic contaminants found in organic waste   总被引:6,自引:0,他引:6  
In recent years, great interest has arisen in recycling of the waste created by modern society. A common way of recycling the organic fraction is amendment on farmland. However, these wastes may contain possible hazardous components in small amounts, which may prevent their use in farming. The objective of our study has been to develop biological methods by which selected organic xenobiotic compounds can be biotransformed by anaerobic or aerobic treatment. Screening tests assessed the capability of various inocula to degrade two phthalates di-n-butylphthalate, and di(2-ethylhexyl)phthalate, five polycyclic aromatic hydrocarbons, linear alkylbenzene sulfonates and three nonylphenol ethoxylates under aerobic and anaerobic conditions. Under aerobic conditions, by selecting the appropriate inoculum most of the selected xenobiotics could be degraded. Aerobic degradation of di(2-ethylhexyl)phthalate was only possible with leachate from a landfill as inoculum. Anaerobic degradation of some of the compounds was also detected. Leachate showed capability of degrading phthalates, and anaerobic sludge showed potential for degrading, polycyclic aromatic hydrocarbons, linear alkylbenzene sulfonates and nonyl phenol ethoxylates. The results are promising as they indicate that a great potential for biological degradation is present, though the inoculum containing the microorganisms capable of transforming the recalcitrant xenobiotics has to be chosen carefully.  相似文献   

10.
The aim of this review is to determine the trends of state-of-art of laccase sources, properties, structure and recent application of fungal laccase in various fields. Laccases are biotechnologically important multi copper proteins that have broad substrate specificity towards aromatic and non-aromatic compounds. Fungi are the major laccase producers especially ascomycetes, deuteromycetes and basidiomycetes, and laccases have an average molecular weight between 50 and 130 kDa. Fungal laccases are used in biotechnological applications for preparation of anticancerous and anti-oxidant hormonal drugs, stabilization of food products, and laccase application is also extended to preparation of biosensors, DNA labeling, immunochemical assay, bioorganic compound synthesis etc. The environmental application of laccase is for biodegradation of dyes, phenols and pesticides, and the mechanism of degradation has been briefly explained. Analysis of the biodegraded dye sample by FT-IR and Mass (ESI)-spectrum has been discussed in a detailed manner. Modeling kinetics has been discussed with respect to degradation of wastes in order to understand the factors involved in the degradation process.  相似文献   

11.
An aerobic bacterium, isolated from a contaminated site, was able to degrade sulfanilic acid (4-aminobenzenesulfonic acid) and was identified as Pseudomonas paucimobilis. The isolate could grow on sulfanilic acid (SA) as its sole carbon and nitrogen source and metabolized the target compound to biomass. The bioconversion capacity depended on the sulfanilic acid concentration; greater than 98% elimination of the hazardous compound was achieved at low (10 mM) sulfanilic acid concentration, and the yield was greater than 70% at 50 mM concentration of the contaminant. The maximum conversion rate was 1.5 mmol sulfanilic acid/h per mg wet cells at 30 degrees C. Ca-alginate-phytagel proved a good matrix for immobilization of P. paucimobilis, with essentially unaltered biodegradation activity. Removal of sulfanilic acid from contaminated industrial waste water was demonstrated. SDS-PAGE analysis of the crude extract revealed novel proteins appearing upon induction with sulfanilic acid and related compounds, which indicated alternative degradation mechanisms involving various inducible enzymes.  相似文献   

12.
Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.  相似文献   

13.
Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.  相似文献   

14.
The main aim of this work was to intensify conventional composting of a mixture of sewage sludge and solid food wastes by a one-stage thermophilic bioconversion of these wastes into an organic fertilizer. An intensive process was carried out in a closed system, with or without addition of a starter culture of Bacillus thermoamylovorans. The most effective thermophilic bioconversion of the mixture of food waste and sewage sludge, with addition of starter culture, was when the pH was buffered with calcium carbonate, or the pH drop in the material was prevented by preliminary removal of sulphides from sewage sludge by hydrogen peroxide.  相似文献   

15.
16.
ABSTRACT: BACKGROUND: Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. RESULTS: P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. CONCLUSIONS: The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.  相似文献   

17.

SUMMARY

Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.  相似文献   

18.
We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif “GxGxxxG” was located at the NAD+-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.  相似文献   

19.
Whole cell microbial biosensors offer excellent possibilities for assaying the complex nature of the bioavailable and bioaccessible fraction of pollutants in contaminated soils, which currently cannot be easily addressed. This paper describes the application and evaluation of three microbial biosensor strains designed to detect the bioavailability and biodegradation of PCBs (and end-products) in contaminated soils and sediments. Polychlorinated biphenyls (PCBs) are considered to be one of the most wide spread, hazardous and persistent pollutants. Herein we describe that there was a positive correlation between the PCB levels within the samples and the percentage of biosensor cells that were expressing their reporter gene; gfp. Immobilisation of the biosensors in calcium alginate beads allowed easy and accurate detection of the biosensor strains in contaminated soil and sludge samples. The biosensors also showed that PCB degradation activity was occurring at a much greater level in Pea inoculated planted soil compared to inoculated unplanted soil indicating rhizoremediation (the removal of pollutants by plant root associated microbes) shows considerable promise as a solution for removing organic xenobiotics from the environment.  相似文献   

20.
Bioconversion of wheat straw using Phanerochaete chrysosporium was carried out in a 200l staged vertical reactor. The bioconversion process was characterized by measuring the percentage degradation of lignin and cellulose, and increment in crude protein content. The effect of airflow rate, inoculum amount and wheat straw loading on bioconversion was investigated using a statistical experimental design. An analysis of variance was performed to determine response surfaces. The quality of bioconversion indicated by an optimization index called the desirability coefficient had the highest value of 0.75 for the fifth day of cultivation. This corresponded to an operating condition of 1.5kg wheat straw per stage using an inoculum amount of 0.38g (100g dry wheat straw)(-1) and an airflow rate of 15lmin(-1). The lignin and cellulose degradation achieved at this operating condition was 27% and 29%, respectively. A ratio of 3 for the weight of wheat straw to inoculum amount gave the highest crude protein of 5.9% on dry weight basis. Among the variables investigated, the airflow rate exhibited a significant effect on the quality of bioconversion. Our results indicate that the quality of bioconversion may be controlled by implementing a predetermined airflow rate schedule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号