首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report our recent findings on the use of tool sets by chimpanzees in Moukalaba-Doudou National Park, Gabon. Direct observations and evidences left by chimpanzees showed that chimpanzees used sticks as pounders, enlargers, and collectors to extract honey from beehives of stingless bees (Meliponula sp.), which may correspond to those previously found in the same site for fishing termites and to those found in Loango National Park, Gabon. However, we observed chimpanzees using a similar set of tools for hunting a medium-sized mammal (possibly mongoose) that hid inside a log. This is the first report of hunting with tools by a chimpanzee population in Central Africa. Chimpanzees may recognize the multiple functions and applicability of tools (extracting honey and driving prey), although it is still a preliminary speculation. Our findings may provide us a new insight on the chimpanzee’s flexibility of tool use and cognitive abilities of complex food gathering.  相似文献   

2.
The use of perforating sticks and flexible stalks in combination for termite fishing and a complex tool-set of three components used sequentially (stout chiel, bodkin, and dip-stick) to penetrate melipone and ground-dwelling bee hives byPan troglodytes troglodytes are documented or, inferred from circumstantial evidence. Functionally, termite extraction tools were similar to other locations in west and central Africa, but the plants and the number of raw material species used were different. Tools varied in the degree of modification (fraying ends). Chimpanzees in the Lossi forest seem to be able to use the tools not in a stereotyped fashion, but in a flexible, insightful way. The extraction of Melipone honey using large pieces of wood as pounding tools has rarely been recorded elsewhere. The most impressive technological solution to the honey-getting problem by wild chimpanzees was shown by this study. This is the only known, use of a tool-set of three components in sequence to extract honey by wild chimpanzees.  相似文献   

3.
Honey represents a highly nutritious resource for animals, but is difficult to obtain given bees' defensive strategies. We investigated exploitation of the underground nests of stingless bees (Meliplebeia lendliana) by three sympatric consumers in Loango National Park, Gabon: the central African chimpanzee (Pan troglodytes troglodytes), forest elephant (Loxodonta cyclotis) and honey badger (Mellivora capensis). Given the differences in their respective morphological traits and sensory abilities, we hypothesized that chimpanzees would be more limited in digging out the bee nests, compared to the other two competitors, and would show behavioral strategies to overcome such constraints. Our dataset comprised camera trap footage recorded over 60 mo at 100 different bee nests. Chimpanzees visited the nests more often than the other consumers, showing a frequency of extraction success comparable to that observed in honey badgers, the most efficient digger. Both chimpanzees and honey badgers increased their extractive attempts across the dry season, whereas elephants did not. The soil hardness was greater during the dry season than the wet season and, possibly in order to compensate for this, chimpanzees showed a tendency toward digging at nests found in relatively softer soil. They also seemed to be inhibited by indirect cues left by other consumers, possibly as a risk‐avoidance strategy. Overall, chimpanzees and honey badgers extracted the underground nests of stingless bees with similar frequencies, whilst forest elephants did so only occasionally. Moreover, chimpanzees can use tools and other behavioral strategies to overcome the physical limitations that may constrain their exploitation of this resource.  相似文献   

4.
Two sticks were found near a broken bee-nest ofMeliplebeia tanganyikae aff.nigrita Alfken in the Mt. Kahuzi region of Zaïre, and were thought to have been used by a chimpanzee or perhaps several chimpanzees to dig out the subterranean nest. Honey, larvae, and most of the nest had been eaten by them. We did not find any evidence to indicate tool-use by chimpanzees in the Masisi or Itebero-Utu regions, although stingless bees were observed and honey was eaten by chimpanzees in both regions. The sticks resembled in length and diameter those known to be employed for digging termite-mounds in south-west Cameroon and Equatorial Guinea. The tool-behavior of the chimpanzees observed at Mt. Kahuzi may be similar to that of those in central Africa, rather than of those in east Africa where digging-tools have yet to be found. Another possibility is that the chimpanzees have developed the digging-tools independently, based on the need to take animal protein in the Mt. Kahuzi region, where termite-mounds are rarely observed. Instead of seeking termites, they may have a stronger motivation to seek bee larvae, especially the larvae of stingless bees beneath the ground, than to the chimpanzees inhabiting lower or drier forests.  相似文献   

5.
Homo faber was once proposed as a label for humans specifically to highlight their unique propensity for tool use. However, new observations on complex tool use by the chimpanzees of Loango National Park, Gabon, expand our knowledge about tool-using abilities in Pan troglodytes. Chimpanzees in Loango, when using tools to extract honey from three types of bee nests, were observed to regularly use three- to five-element tool sets. In other words, different types of tools were used sequentially to access a single food source. Such tool sets included multi-function tools that present typical wear for two distinct uses. In addition, chimpanzees exploited underground bee nests and used ground-perforating tools to locate nest chambers that were not visible from the ground surface. These new observations concur with others from Central African chimpanzees to highlight the importance of honey extraction in arguments favoring the emergence of complex tool use in hominoids, including different tool types, expanded tool sets, multifunction tools, and the exploitation of underground resources. This last technique requires sophisticated cognitive abilities concerning unseen objects. A sequential analysis reveals a higher level of complexity in honey extraction than previously proposed for nut cracking or hunting tools, and compares with some technologies attributed to early hominins from the Early and Middle Stone Age. A better understanding of similarities in human and chimpanzee tool use will allow for a greater understanding of tool-using skills that are uniquely human.  相似文献   

6.
At the northern periphery of the Dja Biosphere Reserve (southeastern Cameroon) we recorded a new use of a tool-set by Pan troglodytes troglodytes to prey on Macrotermes muelleri, M. renouxi, M. lilljeborgi, and M. nobilis. We recovered 79 puncturing sticks and 47 fishing probes at 17 termite nests between 2002 and 2005. The mean length of the puncturing sticks (n = 77) and fishing probes (n = 45) was 52 cm and 56 cm, respectively, and the mean diameter was 9 mm and 4.5 mm, respectively. Sixty-eight percent of 138 chimpanzee fecal samples contained major soldiers of four Macrotermes species. The chimpanzees in southeastern Cameroon appeared to be selective in their choice of plant material to make their tools. The tools found at our study site resemble those from other sites in this region. However, in southeastern Cameroon only one tool-set type was found, whereas two tool-set types have been reported in Congo. Our study suggests that, along with the different vegetation types and the availability of plant material around termite nests, the nest and gallery structure and foraging behavior of the different Macrotermes spp. at all Central African sites must be investigated before we can attribute differences in tool-use behavior to culture.  相似文献   

7.
Recent studies have shown that honey bees, bumble bees, and some meliponine bee species of the genera Trigona, Meliponula, and Dactylurina are hosts of the small hive beetle (SHB) Aethina tumidaMurray (Coleoptera: Nitidulidae), a pest of honey bee colonies in various regions of the world. Olfaction has been implicated in SHB infestations of honey bee and bumble bee colonies. We used olfactometer bioassays to investigate responses of adult male and female SHBs to odors from intact colonies and separate hive components (pot honey, pot pollen, cerumen, and propolis) of three African meliponine bee species, Meliponula ferruginea (Lepeletier) (black morphospecies), M. ferruginea (reddish brown morphospecies), and Meliponula bocandei (Spinola) (Hymenoptera: Apidae). Although both sexes of the beetle strongly preferred intact colony, pot honey, and pot pollen odors, there was no evidence of attraction to propolis and cerumen odors from the three meliponine bee species. Both sexes of SHB also strongly preferred odors from honey bees, Apis mellifera L. (Hymenoptera: Apidae), over odors from the three meliponine bee species. Our results provide substantial evidence of the host potential of African meliponine bees for the SHB, and we discuss this complex association of the SHB with species within the Apidae family.  相似文献   

8.
Feral European Honey Bee (Apis mellifera) has been identified as a potential nest competitor for Australian hollow nesting species, but few studies have investigated the impact of feral honey bee competition on Threatened species. Our study used data from Glossy Black‐cockatoo (Calyptorhynchus lathami halmaturinus) nests on Kangaroo Island, monitored and managed over an 11‐year period, and found 12% of nests became occupied by feral honey bees during that period. Our results indicate that feral honey bees were less likely to occupy nest boxes made of PVC (5%) compared with wooden nest boxes (24%) or natural hollows in Eucalyptus trees (14%). The removal of feral honey bee hives from nests is a priority for long‐term conservation of glossy black‐cockatoos on Kangaroo Island. We recommend that PVC nest boxes are chosen for future nesting habitat restoration, due to the more frequent use of wooden nest boxes by feral honey bees.  相似文献   

9.
With the exception of humans, chimpanzees show the most diverse and complex tool-using repertoires of all extant species. Specific tool repertoires differ between wild chimpanzee populations, but no apparent genetic or environmental factors have emerged as definitive forces shaping variation between populations. However, identification of such patterns has likely been hindered by a lack of information from chimpanzee taxa residing in central Africa. We report our observations of the technological system of chimpanzees in the Goualougo Triangle, located in the Republic of Congo, which is the first study to compile a complete tool repertoire from the Lower Guinean subspecies of chimpanzee (Pan troglodytes troglodytes). Between 1999 and 2006, we documented the tool use of chimpanzees by direct observations, remote video monitoring, and collections of tool assemblages. We observed 22 different types of tool behavior, almost half of which were habitual (shown repeatedly by several individuals) or customary (shown by most members of at least one age-sex class). Several behaviors considered universals among chimpanzees were confirmed in this population, but we also report the first observations of known individuals using tools to perforate termite nests, puncture termite nests, pound for honey, and use leafy twigs for rain cover. Tool behavior in this chimpanzee population ranged from simple tasks to hierarchical sequences. We report three different tool sets and a high degree of tool-material selectivity for particular tasks, which are otherwise rare in wild chimpanzees. Chimpanzees in the Goualougo Triangle are shown to have one of the largest and most complex tool repertoires reported in wild chimpanzee populations. We highlight new insights from this chimpanzee population to our understanding of ape technological systems and evolutionary models of tool-using behavior.  相似文献   

10.
Evidence of tool use for foraging for honey by chimpanzees in Bwindi-Impenetrable National Park, Uganda, is reported. These are the first records of tool use by chimpanzees in this region of the Albertine Rift. Tools of two types were found at sites of bee activity. Chimpanzees apparently use small stick tools to forage for the honey of a stingless bee [Meliponula bocandei (Trigonidae)] that nests in tree cavities and also in subterranean holes. They use significantly larger, thicker tools to assist in foraging for honey of African honeybees (Apis mellifera).  相似文献   

11.
Insects are a nutritious food source for many primates. In chimpanzees, insectivory is most prevalent among communities that manufacture tools to harvest social insects, particularly ants and termites. In contrast to other long-term study sites, chimpanzees (Pan troglodytes schweinfurthii) in Budongo Forest and Kibale National Park, Uganda, rarely eat insects and have small foraging tool kits, supporting speculation that infrequent insectivory—technically aided or otherwise—characterises chimpanzees in this part of Uganda’s Rift Valley. To expand the dataset for this region, insect foraging was investigated at Bulindi (25 km from Budongo) over 19 months during two studies in 2007–2008 and 2012–2013. Systematic faecal analysis demonstrated that insectivory is a habitual foraging activity at this site. Overall levels of insect consumption varied considerably across months but were not predicted by monthly changes in rainfall or fruit intake. Unlike their Budongo and Kibale counterparts, Bulindi chimpanzees often consume ants (principally weaver ants, Oecophylla longinoda) and use sticks to dig out stingless bee (Meliponini) ground nests. In other respects, however, insectivory at Bulindi conforms to the pattern observed elsewhere in this region: they do not manufacture ‘fishing’ or ‘dipping’ tools to harvest termites and aggressive or hard-to-access ants (e.g., army ants, Dorylus spp.), despite availability of suitable prey. The Bulindi data lend support to the supposition that chimpanzees in this part of the Rift Valley rarely exploit termites and Dorylus ants, apparently lacking the ‘cultural knowledge’ that would enable them to do so most efficiently (i.e., tool use). The study’s findings contribute to current debates about the relative influence of genetics, environment and culture in shaping regional and local variability in Pan foraging ecology.  相似文献   

12.
Several populations of wild chimpanzees use tools to raid bee nests, but preliminary observations of chimpanzees in the Congo Basin indicate that they may have developed sophisticated technical solutions to gather honey that differ from those of apes in other regions. Despite the lack of habituated groups within the range of the central subspecies, there have been several reports of different types of tools used by chimpanzees to open beehives and gather honey. Researchers have observed some of these behaviors (honey dipping) in populations of western and eastern chimpanzees, whereas others (hive pounding) may be limited to this region. Toward evaluating hypotheses of regional tool using patterns, we provide the first repeated direct observations and systematic documentation of tool use in honey-gathering by a population of Pan troglodytes troglodytes. Between 2002 and 2006, we observed 40 episodes of tool use in honey-gathering by chimpanzees in the Goualougo Triangle, Republic of Congo. Pounding was the most common and successful strategy to open beehives. Chimpanzees at this site used several tools in a single tool-using episode and could also attribute multiple functions to a single tool. They exhibited flexibility in responses toward progress in opening a hive and hierarchical structuring of tool sequences. Our results support suggestions of regional tool using traditions in honey-gathering, which could be shaped by variation in bee ecology across the chimpanzee range. Further, we suggest that these chimpanzees may have an enhanced propensity to use tool sets that could be related to other aspects of their tool repertoire. Clearly, there is still much to be learned about the behavioral diversity of chimpanzees residing within the Congo Basin.  相似文献   

13.
Some chimpanzees use 2 types of tools to extract underground termites for consumption. Chimpanzees insert thin, flexible probes into tunnels or holes in termite mounds (fishing), and sometimes use stouter, rigid sticks to first puncture the holes and also possibly to fish. Many puncturing sticks have distinctive “brushed” ends. Researchers have hypothesized that chimpanzees create the brushed ends intentionally to increase their affixibility to biting termites (Sugiyama, 1985). The results of our archaeological analysis of a large collection of puncturing sticks used by Central African chimpanzees falsifies this hypothesis, and instead agrees with the recent behavioral observations of Sanz et al. (2004; cf. Bermejo and Illera, 1999) that brushing is a coincidental result of procuring sticks from vegetation sources. The results highlight the positive contribution of an archaeological approach to problems in chimpanzee material culture and emphasize to primatologists the value of curating artifacts.  相似文献   

14.
Self-medication by great apes to control intestinal parasite infections has been documented at sites across Africa. Chimpanzees (Pan troglodytes) swallow the leaves of certain plant species whole, without chewing. Previous studies demonstrated a relationship between chimpanzee leaf swallowing and expulsion of nematode worms (Oesophagostomum sp.) and tapeworms (Bertiella sp.) in dung. We investigated the relationship between leaf swallowing and parasite expulsion in chimpanzees inhabiting a fragmented forest-farm mosaic at Bulindi, Uganda. During 13 months whole undigested leaves occurred in chimpanzee dung at a considerably higher frequency (10.4% of dungs) than at other sites (0.4-4.0%). Leaf swallowing occurred year-round and showed no pronounced seasonality. Chimpanzees egested adults of multiple species of Oesophagostomum (including O. stephanostomum) and proglottids of two tapeworms-Bertiella sp. and probably Raillietina sp. The latter may not be a true infection, but the byproduct of predation on domestic fowl. Compared to previous studies, the co-occurrence of whole leaves and parasites in chimpanzee dung was low. Whereas the presence of leaves in dung increased the probability of adult nematode expulsion, no association between leaf swallowing and the shedding of tapeworm proglottids was apparent. Anthropogenic habitat changes have been linked to alterations in host-parasite interactions. At Bulindi, deforestation for agriculture has increased contact between apes and people. Elevated levels of leaf swallowing could indicate these chimpanzees are especially vulnerable to parasite infections, possibly due to environmental changes and/or increased stress levels arising from a high frequency of contact with humans. Frequent self-medication by chimpanzees in a high-risk environment could be a generalized adaptation to multiple parasite infections that respond differently to the behavior. Future parasitological surveys of apes and humans at Bulindi are needed for chimpanzee health monitoring and management, and to investigate the potential for disease transmission among apes, people, and domestic animals.  相似文献   

15.
Abstract Surveys of nesting sites of feral honey bees (Apis mellifera) and regent parrots (Polytelis anthopeplus) were made in the red gum/black box woodlands of Wyperfeld National Park, Victoria, Australia. Data on tree species and size, and number of hollows were collected from all trees within seven 500 × 100m plots. Nest site characteristics were quantified for both bees and parrots. We found 27 feral honey bee colonies, suggesting a density of 77.1 colonies per km2. The average occupation rate for bees was 1.3% of trees and 0.7% of available hollows. The height, aspect and entrance characteristics of honey bee nests at Wyperfeld were not qualitatively different to those reported elsewhere. We found 15 pairs of nesting regent parrots. Nest sites chosen by these birds overlapped those chosen by honey bees, but 52% of bee nests were in cavities unsuitable for regent parrots. We suggest that honey bee population growth may be limited in the park by a lack of water.  相似文献   

16.
Africanized honey bees (Apis mellifera scutellata) compete with endangered parrots for nest boxes and can hamper conservation efforts. We tested an integrated pest management push‐pull protocol in the Atlantic Forest in São Paulo, Brazil, in an effort to prevent bee swarms from colonizing nest boxes (N = 30 in the forest plus five in aviaries) meant for use by Vinaceous‐breasted Amazons (Amazona vinacea). Fifteen parrot nest boxes were treated with a permethrin insecticide to “push” scout bees away and each parrot box was paired with a bee trap box containing a pheromone lure to “pull” bees. Over a 1‐yr period (March 2013 to March 2014), 29 insect colonies moved into 18 of the 35 trap boxes. Nine Africanized honey bee, three native Jatai bee (Tetragonisca sp.), and 17 wasp colonies occupied trap boxes. Only one experimental push‐pull pair untreated parrot box was invaded by bees and no parrot boxes in aviaries were colonized. Four of the parrot nest boxes were occupied by birds during our study. Although none were used by Vinaceous‐breasted Amazons, Southern House Wrens (Troglodytes musculus), Green‐winged Saltators (Saltator similis), and Plain Parakeets (Brotogeris tirica) nested in the boxes and all nests were successful. Although long‐term studies are needed before drawing conclusions about the effectiveness of trap boxes, our results suggest that a push‐pull protocol may prove useful for reducing the use of nest boxes meant for parrots and other cavity‐nesting birds by Africanized honey bees and other insects.  相似文献   

17.
Evidence for interspecific competition between honey bees and wild bees was studied on 15 calcareous grasslands with respect to: (1) foraging radius of honey bees, (2) overlap in resource use, and (3) possible honey bee effects on species richness and abundance of flower-visiting, ground-nesting and trap-nesting wild bees. The grasslands greatly differed in the number of honey bee colonies within a radius of 2 km and were surrounded by agricultural habitats. The number of flower-visiting honey bees on both potted mustard plants and small grassland patches declined with increasing distance from the nearest apiary and was almost zero at a distance of 1.5–2.0 km. Wild bees were observed visiting 57 plant species, whereas honey bees visited only 24 plant species. Percentage resource overlap between honey bees and wild bees was 45.5%, and Hurlbert’s index of niche overlap was 3.1. In total, 1849 wild bees from 98 species were recorded on the calcareous grasslands. Neither species richness nor abundance of wild bees were negatively correlated with the density of honey bee colonies (within a radius of 2 km) or the density of flower-visiting honey bees per site. Abundance of flower- visiting wild bees was correlated only with the percentage cover of flowering plants. In 240 trap nests, 1292 bee nests with 6066 brood cells were found. Neither the number of bee species nor the number of brood cells per grassland was significantly correlated with the density of honey bees. Significant correlations were found only between the number of brood cells and the percentage cover of shrubs. The number of nest entrances of ground-nesting bees per square metre was not correlated with the density of honey bees but was negatively correlated with the cover of vegetation. Interspecific competition by honey bees for food resources was not shown to be a significant factor determining abundance and species richness of wild bees. Received: 22 March 1999 / Accepted: 24 September 1999  相似文献   

18.
A trademark of Homo sapiens is the enormous variation in behavioral patterns across populations. Insight into the development of human cultures can be aided by studies on communities of Pan across Africa that display unique combinations of social behavior and elementary technology. Only cross-population comparisons can reveal whether the diversity reflects differential genetics, environmental constraints, or is a cultural variant. However, the recently recognized and most endangered subspecies, Pan troglodytes vellerosus, remains completely unstudied in this respect. We report first evidence from a new long-term study of Nigerian chimpanzees at Gashaka. Their dietary composition is highly varied and they have to cope with high concentrations of antifeedant defenses of plants against consumption. Gashaka chimpanzees use a varied tool kit for extractive foraging. For example, they harvest insects throughout the year, via digging sticks and probes, to obtain honey from stingless-bee and honeybee nests, dipping wands to prey on army ants, and fishing rods to eat arboreal ants. Tools appeared to be custom-made with a considerable degree of standardization in length, diameter, and preferential use of distal ends. Moreover, compared to the rainy season, tools were longer during the dry season when insects retreat further into their nests. Many of the expressions of subsistence technology seem to be environmentally constrained. Most notably, the absence of termite-eating could reflect a low abundance of mounds. Other traits may represent cultural variation. For example, the chimpanzees did not hammer open 2 types of hard-shelled nuts with tools, unlike what occurs elsewhere in West Africa. The prevalence of elementary technology may indicate that the material culture of Gashaka chimpanzees is most related to core cultural tendencies of Central African populations.  相似文献   

19.
Honey‐making bee colonies in Bwindi Impenetrable National Park were investigated with Batwa Pygmies locating 228 nests of Apis and five stingless bees (Meliponini). The relative importance of predation, food supply, nesting site, and elevation affecting abundance were studied for meliponines in particular. Nest predation and overall nest abundance had no correlation with elevation along a 1400 m gradient, nor did flowering phenology or pollen collection. Many suitable, large trees were unoccupied by bee nests. In 174 ha of forest plots, 2 Meliponula lendliana, 13 M. nebulata, 16 M. ferruginea, 16 M. bocandei, and 20 Apis mellifera adansonii nests occurred, suggesting a habitat‐wide density of 39 nests/km2. Compared to other studies, Ugandan Meliponini were uncommon (0.27 colonies/ha, tropical mean = 1.9/ha), while Apis mellifera was numerous (0.12 nests/ha, tropical mean = 0.06/ha), despite park policy allowing humans to exploit Apis. Meliponine colony mortality from predators averaged 12 percent/yr and those near ground were most affected. Tool‐using humans and chimpanzees caused 82 percent of stingless bee nest predation. Selective factors affecting nest heights and habit may include auditory hunting by predators for buzzing bees, and indirect mutualists such as termites that leave potential nesting cavities. Mobility and free‐nesting by honey bee colonies should enable rapid community recovery after mortality, especially in parks where human honey hunting is frequent, compared to sedentary and nest‐site‐bound Meliponini.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号