首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Abstract Invasion by Mediterranean annual grasses, such as Avena L. spp. and Bronms L. spp, is one of the major threats to temperate perennial grassland. This study investigated the effects of annual grasses and their litter on the species composition of a grassland near Burra, South Australia. The placement of annual grass litter on soil samples in the glasshouse decreased the establishment or growth of several exotic annual dicots. In the field the addition of annual grass litter slightly decreased the frequency of Danthonia Lam. & DC. tussocks. Furthermore, litter strongly reduced the species richness from 13 species in plots with no litter to nine species in plots with the highest litter level, mainly by decreasing the frequency of common exotic dicots. Native dicot frequency similarly appeared to be decreased by litter addition. In addition to the negative effects of their litter, annual grasses also directly competed with perennial grasses. The magnitude of the competitive effect varied systematically along a slope, suggesting that other factors such as soil properties may control competitive inter actions. The biomass of annual grasses also tended to increase with the addition of their own litter. This combination of positive and negative feedback mechanisms suggests that brief periods favourable for annual grasses, either through management changes or environmental conditions, can lead to persistent changes in the species composition of the system.  相似文献   

4.
Early emergence of plant seedlings can offer strong competitive advantages over later-germinating neighbors through the preemption of limiting resources. This phenomenon may have contributed to the persistent dominance of European annual grasses over native perennial grasses in California grasslands, since the former species typically germinate earlier in the growing season than the latter and grow rapidly after establishing. Recently, European perennial grasses have been spreading into both non-native annual and native perennial coastal grass stands in California. These exotic perennials appear to be less affected by the priority effects arising from earlier germination by European annual grasses. In addition, these species interactions in California grasslands may be mediated by increasing anthropogenic or natural soil nitrogen inputs. We conducted a greenhouse experiment to test the effects of order of emergence and annual grass seedling density on native and exotic perennial grass seedling performance across different levels of nitrogen availability. We manipulated the order of emergence and density of an exotic annual grass (Bromus diandrus) grown with either Nassella pulchra (native perennial grass), Festuca rubra (native perennial grass), or Holcus lanatus (exotic perennial grass), with and without added nitrogen. Earlier B. diandrus emergence and higher B. diandrus density resulted in greater reduction in the aboveground productivity of the perennial grasses. However, B. diandrus suppressed both native perennials to a greater extent than it did H. lanatus. Nitrogen addition had no effect on the productivity of native perennials, but greatly increased the growth of the exotic perennial H. lanatus, grown with B. diandrus. These results suggest that the order of emergence of exotic annual versus native perennial grass seedlings could play an important role in the continued dominance of exotic annual grasses in California. The expansion of the exotic perennial grass H. lanatus in coastal California may be linked to its higher tolerance of earlier-emerging annual grasses and its ability to access soil resources amidst high densities of annual grasses.  相似文献   

5.
Best RJ 《Oecologia》2008,158(2):319-327
Increased resource availability can facilitate establishment of exotic plant species, especially when coincident with propagule supply. Following establishment, increased resource availability may also facilitate the spread of exotic plant species if it enhances their competitive abilities relative to native species. Exotic Canada geese (Branta canadensis) introduce both exotic grass seed and nutrients to an endangered plant community on the Gulf Islands of southwestern British Columbia, Canada. I used greenhouse experiments to assess the competitive advantage of the exotic grasses relative to native and exotic forbs in this community and to test the impacts of nutrient addition from goose feces on competitive outcomes. I grew experimental communities varying in their proportion of forbs versus exotic grasses, and added goose feces as a nutrient source. I found that both native and exotic forbs produced significantly more biomass in competition with conspecifics than in competition with the grasses, and that the proportional abundance of two out of three native forbs was lowest in the combined presence of exotic grasses and nutrient addition. In a second experiment, I found that in monoculture all species of forbs and grasses showed equal growth responses to nutrients. The exotic species did not convert additional nutrients into additional biomass at a higher rate, but did germinate earlier and grow larger than the native species regardless of nutrient availability. This suggests that the exotic species may have achieved their competitive advantage partly by pre-empting resources in community mixtures. Small and late-germinating native forbs may be particularly vulnerable to competitive suppression from exotic grasses and forbs and may be at an even greater disadvantage if their competitors are benefiting from early access to additional nutrients. In combination, the input of exotic propagules and additional nutrients by nesting geese may compromise efforts to maintain native community composition in this system.  相似文献   

6.
7.
1. Changes to plant community composition after invasion are well documented but how these shifts directly affect higher trophic levels is still poorly understood. One potentially important factor is the change in nutritional availability after an invasion. Shifts in nutrient availability could affect the nutrient intake of organisms that live in invaded habitats, causing reduced fecundity and survival. 2. The effects of the interaction among nutrient availability, selection, and diet on nutrient intake of a native bumble bee were examined. No nutritional differences were found between exotic and native pollen or collected and non‐collected pollen in protein or amino acid content, suggesting that differences in nutrient intake from random are based on selection. 3. Nutrient intake was simulated when pollen was selected randomly across all available plant species and when selection was restricted to native plants only or exotic plants only using a permutation model and compared with observed collection. The results suggest that pollen collection is non‐random and that selecting only native or exotic plants cannot provide the protein or amino acid intake observed. 4. These results may help to explain why the responses of native bees to exotic plants are so variable. If the exotic plants in a community can supply the necessary nutrients, bees may readily incorporate them into their diets, but if not, exotic plants may be avoided.  相似文献   

8.
Biological invasions can impact the abundance and diversity of native species, but the specific mechanisms remain poorly discerned. In California grasslands, invasion by European annual grasses has severely reduced the quality of habitat for native forb species. To understand how introduced grasses suppress native and exotic forbs, we examined the response of a Southern California grassland community to factorial removals of live grass and the litter produced in previous seasons. To examine the role that belowground competition for water plays in mediating the impact of grasses, we crossed grass and litter removal treatments with water addition. Our results show that forbs were almost equally suppressed by both competition from live grass and direct interference by litter. Water addition did not ameliorate the effect of grass competition, suggesting that water was not the resource for which plants compete. This evidence is consistent with the susceptibility of forbs to light limitation, especially considering that litter does not consume water or nutrients. Interestingly, despite different histories of co-occurrence with annual grass dominants, native and exotic forbs were comparably suppressed by exotic grasses. Our results indicate that suppression by both live and dead stems underlie the influence of exotic grasses on forb competitors.  相似文献   

9.
Summary The effect of seed predation by Microtus californicus and Mus musculus on plant numbers of four species of California annual grasses was investigated for one year period on a grassland near Davis, California. In winter, mice utilized dead star thistle plants for cover when grasses in open areas were short, but moved into open areas when grass grew tall in spring.Using exclosures and plots sown with known quantities of seed, it was estimated that a mouse population (approximate density 120/acre) consumed 75% of Avena fatua seed, 44% of Hordeum leporinum seed, and 37% of Bromus diandrus seed. Mice showed a strong preference for Avena seed.Plant numbers of Avena and Hordeum were reduced by 62% and 30%, respectively. Hordeum, Lolium, and to a lesser extent, Bromus responded to a competitive release from Avena by increases in plant size and reproductive output. In addition, seed predation markedly increased seed to adult plant survivorship of Avena, Hordeum, and Bromus.Vertebrate seed predation is discussed as a potentially important factor in the yearly patterns of plant population regulation in California annual grasslands.  相似文献   

10.
The invasion of European perennial grasses represents a new threat to the native coastal prairie of northern California. Many coastal prairie sites also experience anthropogenic nitrogen (N) deposition or increased N availability as a result of invasion by N-fixing shrubs. We tested the hypothesis that greater seedling competitive ability and greater responsiveness to high N availability of exotic perennial grasses facilitates their invasion in coastal prairie. We evaluated pairwise competitive responses and effects, and the occurrence of asymmetrical competition, among three common native perennial grasses (Agrostis oregonensis, Festuca rubra, and Nassella pulchra) and three exotic perennial grasses (Holcus lanatus, Phalaris aquatica, and Festuca arundinacea), at two levels of soil N. We also compared the root and shoot biomass and response to fertilization of singly-grown plants, so we could evaluate how performance in competition related to innate plant traits. Competitive effects and responses were negatively correlated and in general varied continuously across native and exotic species. Two exceptions were the exotic species Holcus, which had large effects on neighbors and small responses to them, and competed asymmetrically with all other species in the experiment, and the native grass Nassella, which had strong responses to but little effect on neighbors, and was out-competed by all but one other species in the experiment. High allocation to roots and high early relative growth rate appear to explain Holcus’s competitive dominance, but its shoot biomass when grown alone was not significantly greater than those of the species it out-competed. Competitive dynamics were unaffected by fertilization. Therefore, we conclude that seedling competitive ability alone does not explain the increasing dominance of exotic perennial grasses in California coastal prairie. Furthermore, since native and exotic species responded individualistically, grouping species as ‘natives’ and ‘exotics’ obscured underlying variation within the two categories. Finally, elevated soil N does not appear to influence competition among the native and exotic perennial grasses studied, so reducing soil N pools may not be a critical step for the restoration of California coastal prairie.  相似文献   

11.
Abstract. Non-native perennial grasses form 30% of the live understory biomass in seasonally dry, submontane forests in Hawaii Volcanoes National Park, yet their effects on native species are unknown. We removed these grasses from plots of 20 m × 20 m in 1991 and maintained removal and control areas over the next three years. Two fast growing shrub species, Dodonaea viscosa and Osteomeles anthylidifolia, increased in size significantly more in removal areas than in controls. Individuals of the most abundant shrub species, Styphelia tameiameia showed no net growth response to grass removal. They did, however, change their architecture: many branches along the mid and upper sections of the main trunk died and a proliferation of new leaves and shoots occurred in the lower 40 cm of trunk. Basal diameter increase was very small in Metrosideros polymorpha, the dominant tree species in these sites. All species except Styphelia had significantly increased leaf tissue nitrogen in removal plots by 18 months after removal when compared to shrubs in control areas suggesting that removal plot shrubs had greater access to soil nitrogen. Available soil-N pools, which were generally higher in the removal plots, support this interpretation. Light levels near the soil surface were also higher where grasses were removed than where they were present which may have contributed to increased shrub growth. By contrast, soil moisture was consistently lower where grasses were removed than where they were still present. Shrub tissue carbon isotope values were consistent with the interpretation that shrubs in removal plots had less rather than more water available to them. Hence, the increased growth observed in removal plot shrubs could not be due to release from moisture competition. Lastly, our results showed that seedlings of all woody species except Metrosideros were significantly more abundant in removal plots at both one and three years after removal and initially high sapling mortality was balanced by high recruitment into the sapling class. We believe that over time this will result in increased densities of native shrubs if grasses are kept out. With the presence of grasses, shrub growth in these woodlands is reduced and biomass is shifting towards grasses.  相似文献   

12.
13.
Little is known about the potential for coexistence between native and non-native plants after large-scale biological invasions. Using the example of native perennial bunchgrasses and non-native annual grasses in California grasslands, we sought to determine the effects of interference from non-native grasses on the different life stages of the native perennial bunchgrass Nassella pulchra. Further, we asked whether N. pulchra interferes with non-native annual grasses, and whether competition for water is an important component of these interspecific interactions in this water-limited system. In a series of field and greenhouse experiments employing neighbor removals and additions of water, we found that seedling recruitment of N. pulchra was strongly seed-limited. In both field and greenhouse, natural recruitment of N. pulchra seedlings from grassland soil was extremely low. In field plots where we added seeds, addition of water to field plots increased density of N. pulchra seedlings by 88% and increased total aboveground N. pulchra seedling biomass by almost 90%, suggesting that water was the primary limiting resource. In the greenhouse, simulated drought early in the growing season had a greater negative effect on the biomass of annual seedlings than on the seedlings of N. pulchra. In the field, presence of annuals reduced growth and seed production of all sizes of N. pulchra, and these effects did not decrease as N. pulchra individuals increased in size. These negative effects appeared to be due to competition for water, because N. pulchra plants showed less negative pre-dawn leaf water potentials when annual neighbors were removed. Also, simply adding water caused the same increases in aboveground biomass and seed production of N. pulchra plants as removing all annual neighbors. We found no evidence that established N. pulchra plants were able to suppress non-native annual grasses. Removing large N. pulchra individuals did not affect peak biomass per unit area of annuals. We conclude that effects of interference from non native annuals are important through all life stages of the native perennial N. pulchra. Our results suggest that persistence of native bunchgrasses may be enhanced by greater mortality of annual than perennial seedlings during drought, and possibly by reduced competition for water in wet years because of increased resource availability. Received: 12 November 1998 / Accepted: 4 August 1999  相似文献   

14.
California grasslands have been severely impacted by the invasion of nonnative annual grasses, which often limit restoration of this important ecosystem. In this study, we explored the use of mowing as a restoration tool for native perennial grasslands at the Santa Rosa Plateau Ecological Reserve in southern California. We sought to evaluate if, over time, mowing would reduce nonnative annual grass cover and benefit native species, especially the native bunchgrass Stipa pulchra. We hypothesized that repeated mowing, carefully timed to target nonnative annual grasses prior to seed maturation, would reduce nonnative seed inputs into the soil and eventually lead to diminished abundance of these species. We monitored vegetation in mowed and unmowed plots for 4 years, and conducted a seed bank study after 5 years to better understand the cumulative effects of mowing on native and nonnative seed inputs. Consistent with our hypotheses, we found that mowing successfully reduced nonnative annual grass cover and benefitted some native species, including S. pulchra. However, we also found that nonnative forb species showed progressive increases in mowed plots over time. We observed similar patterns of species composition in the soil seed bank. Together, these results suggest that mowing can be used to control nonnative annual grasses and increase the abundance of native bunchgrasses, but that this method may also have the unintended consequence of increasing nonnative forb species.  相似文献   

15.
Mandyam K  Fox C  Jumpponen A 《Mycorrhiza》2012,22(2):109-119
Native tallgrass prairies support distinct dark septate endophyte (DSE) communities exemplified by Periconia macrospinosa and Microdochium sp. that were recently identified as common root symbionts in this system. Since these DSE fungi were repeatedly isolated from grasses and forbs, we aimed to test their abilities to colonize different hosts. One Microdochium and three Periconia strains were screened for colonization and growth responses using five native grasses and six forbs in an in vitro system. Previously published data for an additional grass (Andropogon gerardii) were included and reanalyzed. Presence of indicative inter- and intracellular structures (melanized hyphae, microsclerotia, and chlamydospores) demonstrated that all plant species were colonized by the DSE isolates albeit to varying degrees. Microscopic observations suggested that, compared to forbs, grasses were colonized to a greater degree in vitro. Host biomass responses varied among the host species. In broad comparisons, more grass species than forbs tended to respond positively to colonization, whereas more forb species tended to be non-responsive. Based on the suspected differences in the levels of colonization, we predicted that tallgrass prairie grasses would support greater DSE colonization than forbs in the field. A survey of field-collected roots from 15 native species supported this hypothesis. Our study supports the “broad host range” of DSE fungi, although the differences in the rates of colonization in the laboratory and in the field suggest a greater compatibility between grasses and DSE fungi. Furthermore, host responses to DSE range from mutualism to parasitism, suggesting a genotype-level interplay between the fungi and their hosts that determines the outcome of this symbiosis.  相似文献   

16.
Plant Ecology - Semi-arid regions with Mediterranean-type climates harbor exceptional biodiversity, but are increasingly threatened by invading exotic annual species and climatic changes, including...  相似文献   

17.
We examined seed survival in exotic- and native-dominated grasslands by placing seeds of a once-pervasive native grass species, Nassella pulchra, and two of the most common, widespread exotic grass species, Avena fatua and Bromus hordeaceus, in mesh bags in the field for 3 months. Compared to germination of unexposed seeds not placed in the field, exotic species experienced an approximately 40% reduction in viability, whereas the mortality experienced by the native species was <20%. Despite these differences, germination rates of exposed seeds were similar between native and exotic species because native N. pulchra seeds had lower initial viability prior to entering the seed bank. Seed mortality did not differ based on whether seeds were placed in habitats dominated by exotic or native grasses. Rather, our results suggest that re-establishment of native N. pulchra must focus on maximizing seed viability and survival, and that A. fatua and B. hordeaceus overcome relatively higher losses of viable seeds in the seed bank, potentially by producing large numbers of highly viable seeds.  相似文献   

18.
Soil seed banks are important to many plant communities and are recognized as an important component of management plans. Understanding seed bank composition and density is especially important when communities have been invaded by exotic species and must be managed to promote desirable species. We examined germinable soil seed banks in southern California coastal sage scrub (CSS) that is heavily invaded by exotic grasses and in adjacent exotic grassland. Soils from both communities had similar seed banks, dominated by high densities of exotic grass and forb species. Up to 4,000 exotic grass seeds and at least 400 exotic forb seeds/m2 were found in most soils, regardless of aboveground vegetation type. Native forbs averaged 400 seeds/m2 in grass-dominated areas and about 800 in shrub-dominated soils. Shrub seed density was <1 and <10 seeds/m2 in grass- and shrub-dominated areas, respectively, indicating that the shrub seed bank is not persistent compared to annuals. We also compared pre- and post-burn soil seed banks from one location that burned in October 2003. Late-season burning in both grass- and CSS-dominated areas disproportionately reduced exotic grass seed densities relative to native seed densities. The similarity of the seed banks in adjacent grass and shrub communities suggests that without intervention, areas currently dominated by CSS may become more similar to grass-dominated areas in terms of aboveground vegetation. In such areas, the first growing season following a wildfire is a window of opportunity for increasing native diversity at a time when density of exotic grass seeds is low. At time of research, Robert D. Cox was graduate student.  相似文献   

19.
20.
Abstract. Grassland communities are increasingly recognized as disturbance‐dependent ecosystems, yet there are few replicated, multi‐site studies documenting vegetation responses to varying frequencies and types of grassland disturbance. Even so, land managers frequently manipulate disturbance regimes in an attempt to favour native grassland plants over exotic species. We conducted a factorial experiment testing three frequencies of clipping combined with litter accumulation, litter removal, and soil disturbance within the highly threatened California coastal prairie plant community. We monitored the response of native/exotic, grass/forb plant guilds once a year for four years. More frequent clipping reduced cover of exotic grasses and favoured exotic forbs, whereas native species were largely unaffected by clipping frequency. Litter accumulation, litter removal, and soil disturbance did not affect vegetation composition. Effects of litter accumulation may take longer than our experiment allowed, and soil disturbance due to our treatments was not sufficiently strong to show consistent effects relative to mammalian soil disturbance. Treatment response of some plant guilds differed among sites, highlighting the importance of replicating experiments at several sites before recommending conservation management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号