首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of polyherbal formulation Ambrex was evaluated in butylated hydroxytoluene (BHT) induced toxicity of lungs and liver in rats. Toxicity was produced by administering BHT (500 mg/kg/day) for 3 days. Lung damage was evidenced by elevated levels of broncho alveolar lavage fluid (BAL) parameters such as protein, lactate, lactate dehydrogenase (LDH), alkaline phosphatase (ALP), acid phosphatase (ACP) and glucose-6-phosphate dehydrogenase (G6PDH). Liver damage was proved by elevated levels of serum protein and markers such as LDH, ALP, aspartate amino transferase (AST), alanine amino transferase (ALT), decreased level of lipid peroxides (LPO) in serum and glutathione (GSH) in liver. Administration of aqueous suspension of Ambrex (50 mg/kg orally) retained these elevated levels of BAL-protein, lactate, LDH, ALP, ACP, G6PDH and serum-protein, LDH, ALP, AST and ALT at near normal values. Decreased level of liver GSH was retained at near normalcy in Ambrex pretreated BHT-administered animals. There was no change in liver LPO in all the four groups.  相似文献   

2.
Despite the enormous number of studies demonstrating changes in the chaperone-like activity of α-crystallins in vitro, little is known about how these changes influence life-long lens transparency in vivo. Using the γB-crystallin I4F mutant protein as a target for αA-crystallins, we examined how cataract phenotypes are modulated by interactions between α-crystallins with altered chaperone-like activities and γB-I4F proteins in vivo. Double heterozygous α-crystallin knock-out αA(+/-) αB(+/-) mice with a decreased amount of α-crystallins were used to simulate reduced total α-crystallin chaperone-like activity in vivo. We found that triple heterozygous αA(+/-) αB(+/-) γB(I4F/+) mice developed more severe whole cataracts than heterozygous γB(I4F/+) mice. Thus, total chaperone-like activity of α-crystallins is important for maintaining lens transparency. We further tested whether mutant αA-crystallin Y118D proteins with increased chaperone-like activity influenced the whole cataract caused by the γB-I4F mutation. Unexpectedly, compound αA(Y118D/+) γB(I4F/+) mutant lenses displayed severe nuclear cataracts, whereas the lens cortex remained unaffected. Thus, the synergistic effect of αA-Y118D and γB-I4F mutant proteins is detrimental to the transparency only in the lens core. α-Crystallins with different chaperone-like activities are likely required in the lens cortex and nucleus for maintaining transparency.  相似文献   

3.
The generation of free radicals has been implicated in the causation of cataract, and compounds that can scavenge free radicals ameliorate the disease process. This study investigated the possible free radical scavenging potential of curcumin at a dose of 75 mg/kg body wt on selenium-induced cataract in rat pups. Intraperitoneal injection of sodium selenite (15 μmol/kg body wt) into 8- to 10-day-old rat pups led to severe oxidative stress in the eye lens as evidenced by increased nitric oxide, superoxide anion, and hydroxyl radical generation and inducible nitric oxide synthase expression that probably led to cataract formation. Selenium exposure also caused an increase in total calcium in the eye lens and significantly inhibited the activity of Ca2+ ATPase but not Na+/K+ ATPase or Mg2+ ATPase. On the other hand, pretreatment with curcumin, but not simultaneous or posttreatment, led to a decrease in oxidative stress and also rescued the selenium-mediated increase in lens Ca2+ and inhibition of Ca2+ ATPase activity in the eye lens. The results of this study demonstrate that an increase in free radical generation triggered by selenium could cause inactivation of lens Ca2+ ATPase leading to Ca2+ accumulation. This enhanced Ca2+ can cause activation of calpain-mediated proteolysis in the lens, resulting in lens opacification. Curcumin in this study was able to prevent selenium-induced oxidative stress leading to activation of Ca2+ ATPase and inhibition of lens opacification. Thus, curcumin has the potential to function as an anticataractogenic agent, possibly by preventing free radical-mediated accumulation of Ca2+ in the eye lens.  相似文献   

4.
For survival, parasite exerts several lines of defense of which drug neutralization is one of the major phenomena. Lack of phase I cytochrome P450 in some of the nematode render them depend on the phase II detoxification system involving GST as a major detoxifying enzymes. In present study, the antifilarial DEC, phenolic compound BHA and methyl chalcone have been evaluated for proteomic and biochemical studies in Setaria cervi. BHA and methyl chalcone showed cytotoxic effect leading to irreversible inhibition in motility and viability of parasites. These drugs showed marked alteration in proteomic profile of S. cervi at 100 μM concentration with 10.82, 8.52 and 6.75% downregulated (<0.5) and 7.64, 31.78 and 24.32% upregulated (>1.5) in DEC, BHA and methyl chalcone treatment respectively. Significant depletion in GSH level with increase in NO production was observed. Amongst these compounds, methyl chalcone demonstrated significant inhibitory effect (p<0.05) on GST, PGHS and PTP activity leading to loss of metabolic homeostasis and parasite death. The cytotoxic response and altered expression profile of major enzymes under drug exposure suggested the oxidative stress induced apoptosis as a major cause of parasite killing which was further supported by DNA fragmentation in BHA and methyl chalcone.  相似文献   

5.
BACKGROUND: Two extraembryonic tissues form early in Drosophila development. One, the amnioserosa, has been implicated in the morphogenetic processes of germ band retraction and dorsal closure. The developmental role of the other, the yolk sac, is obscure. RESULTS: By using live-imaging techniques, we report intimate interactions between the amnioserosa and the yolk sac during germ band retraction and dorsal closure. These tissue interactions fail in a subset of myospheroid (mys: betaPS integrin) mutant embryos, leading to failure of germ band retraction and dorsal closure. The Drosophila homolog of mammalian basigin (EMMPRIN, CD147)-an integrin-associated transmembrane glycoprotein-is highly enriched in the extraembryonic tissues. Strong dominant genetic interactions between basigin and mys mutations cause severe defects in dorsal closure, consistent with basigin functioning together with betaPS integrin in extraembryonic membrane apposition. During normal development, JNK signaling is upregulated in the amnioserosa, as midgut closure disrupts contact with the yolk sac. Subsequently, the amnioserosal epithelium degenerates in a process that is independent of the reaper, hid, and grim cell death genes. In mys mutants that fail to establish contact between the extraembryonic membranes, the amnioserosa undergoes premature disintegration and death. CONCLUSIONS: Intimate apposition of the amnioserosa and yolk sac prevents anoikis of the amnioserosa. Survival of the amnioserosa is essential for germ band retraction and dorsal closure. We hypothesize that during normal development, loss of integrin-dependent contact between the extraembryonic tissues results in JNK-dependent amnioserosal disintegration and death, thus representing an example of developmentally programmed anoikis.  相似文献   

6.
Circulating endothelial progenitor cells (EPCs) play a key role in restoring endothelial function and enhancing angiogenesis. However, the effects of low-dose aspirin on circulating EPCs are not well known. We investigated the effects of low-dose aspirin on EPC migration, adhesion, senescence, proliferation, apoptosis and endothelial nitric oxide synthase (eNOS) expression. EPC migration was detected by a modified Boyden chamber assay. EPC adhesion assay was performed by counting adherent cells on fibronectin-coated culture dishes. EPC senescence was assessed by both senescence-associated-beta-galactosidase staining and DAPI staining. EPC proliferation was analyzed by MTT assay. EPC apoptosis was evaluated by flow cytometric analysis. eNOS protein expression was measured by Western blotting analysis. Aspirin promoted EPC migratory and adhesive capacity at concentrations between 0.1 and 100micromol/L and prevented senescence at concentrations between 50 and 100micromol/L. Meanwhile, aspirin in a range of these concentrations did not affect EPC proliferation, apoptosis or eNOS expression. Our findings indicate that low-dose aspirin promotes migration and adhesion and delays the onset of senescence of EPCs.  相似文献   

7.
Chorioamnionitis is associated with preterm labor. Leukocytes infiltrate infected tissue and secrete hydrogen peroxide (H2O2) and other reactive oxygen products as part of their bactericidal activity. We have therefore investigated the effect of H2O2 on activity of in vitro uteri from pregnant rats. Uteri from 18-day pregnant rats exposed to H2O2 showed a dose-dependent increase in both contractile activity and production of prostaglandins (PG) E2 and F2 alpha compared to untreated controls. The antioxidant butylated hydroxy anisole (BHA) inhibited the H2O2-induced uterine activity. Furthermore, BHA inhibited contractions and PG production from spontaneously contracting uteri from 21-day pregnant rats. H2O2 increased chemiluminescence of uterine tissue, an index of oxygen or lipid radical formation, whereas BHA inhibited this effect. The BHA inhibition of uterine activity was reversed by addition of PGE2 to the incubation chamber. These data support the hypothesis that reactive oxygen can regulate PG production by the uterus and suggests a role for reactive oxygen in infection-induced labor and perhaps normal term labor as well.  相似文献   

8.
Multiple mating by social insect queens increases the genetic diversity among colony members, thereby reducing intracolony relatedness and lowering the potential inclusive fitness gains of altruistic workers. Increased genetic diversity may be adaptive, however, by reducing the prevalence of disease within a nest. Honeybees, whose queens have the highest levels of multiple mating among social insects, were investigated to determine whether genetic variation helps to prevent chronic infections. I instrumentally inseminated honeybee queens with semen that was either genetically similar (from one male) or genetically diverse (from multiple males), and then inoculated their colonies with spores of Ascosphaera apis, a fungal pathogen that kills developing brood. I show that genetically diverse colonies had a lower variance in disease prevalence than genetically similar colonies, which suggests that genetic diversity may benefit colonies by preventing severe infections.  相似文献   

9.
10.
Soluble NSF attachment protein receptors (SNAREs) are the core proteins in membrane fusion. The neuron-specific synaptic v-SNARE n-syb (neuronal Synaptobrevin) plays a key role during synaptic vesicle exocytosis. In this paper, we report that loss of n-syb caused slow neurodegeneration independent of its role in neurotransmitter release in adult Drosophila melanogaster photoreceptor neurons. In addition to synaptic vesicles, n-Syb localized to endosomal vesicles. Loss of n-syb lead to endosomal accumulations, transmembrane protein degradation defects, and a secondary increase in autophagy. Our evidence suggests a primary defect of impaired delivery of vesicles that contain degradation proteins, including the acidification-activated Cathepsin proteases and the neuron-specific proton pump and V0 adenosine triphosphatase component V100. Overexpressing V100 partially rescued n-syb-dependent degeneration through an acidification-independent endosomal sorting mechanism. Collectively, these findings reveal a role for n-Syb in a neuron-specific sort-and-degrade mechanism that protects neurons from degeneration. Our findings further shed light on which intraneuronal compartments exhibit increased or decreased neurotoxicity.  相似文献   

11.
The commonly used food-additive antioxidants, butylated hydroxyanisole and butylated hydroxytoluene, are inhibitors of the hepatic microsomal mono-oxygenase system, as assayed by benzpyrene hydroxylase activity and demethylase activities. Generally, butylated hydroxyanisole is a more potent inhibitor than butylated hydroxytoluene. Both inhibitors bind to cytochrome P-450 and induce “type I” binding spectra. Cytochrome P-450 is tentatively assigned as the site of inhibition.  相似文献   

12.
Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.  相似文献   

13.
14.
15.
Examination of glucosylation of lens protein was conducted utilizing tritiated BH4?. The overall results indicate that approximately 0.20 moles of tritium were incorporated per mole of protein. Similar results were obtained with normal and senile cataractous lenses with varying degrees of opacity. Furthermore no difference in the 3H incorporation was observed between soluble and insoluble protein fractions derived from these lenses. Investigation of selected polypeptides isolated from the senile cataracts gave comparable results. Protein isolated from diabetic lenses had only slightly higher levels of tritium incorporation, giving an average value of 0.27 moles per mole of protein. Analyses of the tritiated products indicate that approximately 50% of the incorporation is probably due to reduction of other types of compounds. These results suggest that glucosylation does not appear to be a primary factor in cataract formation.  相似文献   

16.
Lens biology: development and human cataractogenesis.   总被引:16,自引:0,他引:16  
Cataract, or opacification of the lens of the eye, is the commonest cause of visual impairment world-wide. It is only treatable at present by surgical removal. Recent advances in our understanding of the genetics of human cataract, in particular the inherited congenital form, together with the development of an array of animal models have provided valuable new insights into normal vertebrate lens biology and the mechanisms that underlie cataract formation. In this article, we review the current state of research in these areas and discuss thinking regarding the relationship between the phenotypes observed and the underlying genotype in inherited cataract.  相似文献   

17.
Macroautophagy has been implicated as a mechanism of cell death. However, the relationship between this degradative pathway and cell death is unclear as macroautophagy has been shown recently to protect against apoptosis. To better define the interplay between these two critical cellular processes, we determined whether inhibition of macroautophagy could have both pro-apoptotic and anti-apoptotic effects in the same cell. Embryonic fibroblasts from mice with a knock-out of the essential macroautophagy gene atg5 were treated with activators of the extrinsic and intrinsic death pathways. Loss of macroautophagy sensitized these cells to caspase-dependent apoptosis from the death receptor ligands Fas and tumor necrosis factor-alpha (TNF-alpha). Atg5-/- mouse embryonic fibroblasts had increased activation of the mitochondrial death pathway in response to Fas/TNF-alpha in concert with decreased ATP levels. Fas/TNF-alpha treatment failed to up-regulate macroautophagy, and in fact, decreased activity at late time points. In contrast to their sensitization to Fas/TNF-alpha, Atg5-/- cells were resistant to death from menadione and UV light. In the absence of macroautophagy, an up-regulation of chaperone-mediated autophagy induced resistance to these stressors. These results demonstrate that inhibition of macroautophagy can promote or prevent apoptosis in the same cell and that the response is governed by the nature of the death stimulus and compensatory changes in other forms of autophagy. Experimental findings that an inhibition of macroautophagy blocks apoptosis do not prove that autophagy mediates cell death as this effect may result from the protective up-regulation of other autophagic pathways such as chaperone-mediated autophagy.  相似文献   

18.
Carnosic acid is a well-known antioxidant. Recently, it has been identified as modulator of nuclear factor erythroid 2-related factor 2 (Nrf2). The effect of carnosic acid in the context of cardiovascular disorders has not been studied. In the present study, we investigated the beneficial effect and the underlying cardioprotective mechanism of carnosic acid by using mouse model of isoproterenol (ISO)-induced myocardial stress. Elevated serum levels of Troponin I, CK-MB, LDH, SGOT and SGPT, and myofibrillar degeneration with necrotic damage, and the presence of epicardial inflammatory infiltrate (H & E staining) confirmed the ISO-induced myocardial stress. Myocardial content of vitamin C, reduced glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, NAD(P)H: quinine oxidoreductase 1, superoxide dismutase, catalase, nuclear translocation of Nrf2 and protein expression heme oxygenase-1 were evaluated. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and myocardial expression of cleaved caspase-3, caspase-9, p53, Bax, and Bcl-2 were investigated to assess the apoptotic cell death. Pretreatment with carnosic acid attenuated ISO-induced elevated serum levels of Troponin I, CK-MB, LDH, SGOT and SGPT, and histopathological alterations in heart. Moreover, carnosic acid enhanced the nuclear translocation of Nrf2 and up-regulated the phase II/antioxidant enzyme activities. Furthermore, TUNEL assay and apoptosis-related protein analysis indicated that carnosic acid prevented ISO-induced cardiomyocyte apoptosis. Isoproterenol-induced myocardial lipid peroxidation and protein oxidation were also significantly decreased by carnosic acid pretreatment. The overall results clearly indicate that therapeutic application of carnosic acid might be beneficial in treating cardiovascular disorders.  相似文献   

19.
Tseng HH  Tseng TC 《Mycopathologia》1995,129(2):73-78
Butylated hydroxyanisole (BHA), Butylated hydroxytoluene (BHT) and tertiary butylhydroquinone (TBHQ) alone in cultural media were tested for the inhibition of growth and luteoskyrin production by two toxigenic strains ofPenicillium islandicum UST-11 andP. islandicum HLT-6. In potato dextrose agar, the concentrations of BHA and TBHQ from 0.2 mg/disc, BHT from 5.0 mg/disc did affect the growth of both tested strains, but the initial concentrations of these antioxidants to reduced luteoskyrin production by UST-11 strain were BHA 0.5 mg/disc, BHT 1.0 mg/disc and TBHQ 0.4 mg/disc, while for HLT-6, BHA 0.4 mg/disc, BHT and TBHQ were 0.2 mg/disc, respectively. In grainy and powdery rice media, the effects of BHA, BHT and TBHQ on luteoskyrin production byP. islandicum UST-11 and HLT-6 were clearly demonstrated. The efficiency of the inhibitory effect was not only closely related to the concentration of antioxidants, but also completely inhibited the luteoskyrin production at a concentration of 200 mg/kg or higher. Also, the antioxidants at a concentration higher than 20 mg/kg reduced significantly the growth and luteoskyrin production by both strains ofP. islandicum.  相似文献   

20.
Quorum sensing (QS) coordinates the expression of virulence factors and allows bacteria to counteract the immune response, partly by increasing their tolerance to the oxidative stress generated by immune cells. Despite the recognized role of QS in enhancing the oxidative stress response, the consequences of this relationship for the bacterial ecology remain unexplored. Here we demonstrate that QS increases resistance also to osmotic, thermal and heavy metal stress. Furthermore a QS-deficient lasR rhlR mutant is unable to exert a robust response against H2O2 as it has less induction of catalase and NADPH-producing dehydrogenases. Phenotypic microarrays revealed that the mutant is very sensitive to several toxic compounds. As the anti-oxidative enzymes are private goods not shared by the population, only the individuals that produce them benefit from their action. Based on this premise, we show that in mixed populations of wild-type and the mexR mutant (resistant to the QS inhibitor furanone C-30), treatment with C-30 and H2O2 increases the proportion of mexR mutants; hence, oxidative stress selects resistance to QS compounds. In addition, oxidative stress alone strongly selects for strains with active QS systems that are able to exert a robust anti oxidative response and thereby decreases the proportion of QS cheaters in cultures that are otherwise prone to invasion by cheats. As in natural environments stress is omnipresent, it is likely that this QS enhancement of stress tolerance allows cells to counteract QS inhibition and invasions by social cheaters, therefore having a broad impact in bacterial ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号