首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quinary system KCl-K2SO4-MgCl2-MgSO4-Mg(OH)2-H2O and associated eight systems K2SO4-MgSO4-Mg(OH)2-H2O, MgCl2-MgSO4-Mg(OH)2-H2O, KCl-MgCl2-Mg(OH)2-H2O, KCl-K2SO4-Mg(OH)2-H2O, MgSO4-Mg(OH)2-H2O, MgCl2-Mg(OH)2-H2O, K2SO4-Mg(OH)2-H2O and KCl-Mg(OH)2-H2O were investigated at 50° The solid phases of these systems were the new basic triple salt (NS salt B), MgCl2 · 3Mg(OH)2 · 8H2O, MgSO4 · 5Mg(OH)2 · 3H2O, carnallite, leonite, kieserite, hexahydrite, bischofite, potassium chloride, potassium sulfate and magnesium hydroxide and the crystallization fields of these salts in nine systems were determined.  相似文献   

2.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] towards a wide range of platinum(II) and palladium(II) chloride complex substrates [L2MCl2] has been explored, using the technique of electrospray ionisation mass spectrometry to directly analyse reaction solutions. In the majority of cases, products are formed by addition of the ML22+ fragment to the {Pt2S2} core, giving trinuclear species [Pt2(μ-S)2(PPh3)4ML2]2+. The adducts with Pt(diene) [diene=cyclo-octa-1,5-diene (cod), norbornadiene], Pd(cod), Pd(bipy) (bipy=2,2-bipyridine), Pt(PMe3)2 and Pt(PTA)2 (PTA=phosphatriaza-adamantane) moieties were synthesised and characterised on the macroscopic scale, with [Pt2(μ-S)2(PPh3)4Pt(cod)] (BF4)2 and [Pt2(μ-S)2(PPh3)4Pd(bipy)] (PF6)2 also characterised by X-ray diffraction studies. No metal scrambling was found to occur, as has been observed in some previous cases involving the related complexes [Pt2(μ-Se)2(PPh3)4] and [Pt2(μ-S)2(dppe)2] (dppe=Ph2PCH2CH2PPh2). With cis-[PtCl2(SOMe2)2] the species [Pt2(μ-S)2(PPh3)4PtCl(SOMe2)]+ was formed, as a result of the lability of the SOMe2 ligand. With palladium(II)-phosphine systems, the observed product species is dependent on the phosphine; the bulky PPh3 ligand in [PdCl2(PPh3)2] leads primarily to the analogous known species [Pt2(μ-S)2(PPh3)4PdCl(PPh3)]+, and a small amount of the metal-scrambled species [PtPd2S2(PPh3)5Cl]+. In contrast, [PdCl2(PTA)2], containing the small PTA ligand gave [Pt2(μ-S)2(PPh3)4Pd(PTA)2]2+.  相似文献   

3.
Reaction of (PhMe2P)2PtMe2 or [(κ2-P,N)-Ph2PC2H4NMe2]PtMe2 with an excess of H2SnBu2 or H2SnPh2 resulted in the catalytic formation of cyclo-, oligo- and/or polystannanes. In the reaction of (PhMe2P)2PtMe2 with H2SnBu2, linear oligomeric species H(SnBu2)nH were observed in the initial stage of the reaction, which eventually converted into cyclostannanes. Only polystannanes were observed in the reaction of [(κ2-P,N)-Ph2PC2H4NMe2]PtMe2 with H2SnBu2. The reactions of H2SnPh2 were similar, but more difficult to analyze due to redistribution reactions and the formation of insoluble products. The mechanism of the reactions is clearly different to that previously observed for HSnR3 because metal complexes indicative of oxidative addition/reductive elimination reactions were only observed as minor products.  相似文献   

4.
The coordination chemistry of the metalloligand [Pt2(μ-S)2(PPh3)4] towards cobalt(II) and cobalt(III) centres has been explored using an electrospray ionisation mass spectrometry (ESI MS)-directed methodology. Reaction of [Pt2(μ-S)2(PPh3)4] with CoCl2·6H2O in methanol gave a green-yellow suspension of the known adduct [Pt2(μ-S)2(PPh3)4CoCl2], and the CoBr2 adduct could be similarly prepared. When in situ-generated [Pt2(μ-S)2(PPh3)4CoCl2] is reacted with 8-hydroxyquinoline (HQ) and base, the initial product is the cobalt(II) adduct [Pt2(μ-S)2(PPh3)4CoQ]+, which is then converted in air to the cobalt(III) adduct [Pt2(μ-S)2(PPh3)4CoQ2]+, isolated as its hexafluorophosphate salt. The corresponding picolinate (Pic) derivative [Pt2(μ-S)2(PPh3)4Co(Pic)2]+ was similarly prepared, however reaction of [Pt2(μ-S)2(PPh3)4], CoCl2·6H2O and 8-(tosylamino)quinoline (HTQ) produced only the cobalt(II) adduct [Pt2(μ-S)2(PPh3)4CoTQ]+. Reactions of [Pt2(μ-S)2(PPh3)4], CoCl2·6H2O and dithiocarbamates gave cobalt(III) complexes [Pt2(μ-S)2(PPh3)4Co(S2CNR2)2]+ [R = Et or R2 = (CH2)4], and proceeded much more rapidly, consistent with the known ability of the dithiocarbamate ligand to stabilize cobalt in higher oxidation states. A study of the fragmentation of cobalt(III) adducts by positive-ion ESI mass spectrometry indicated that [Pt2(μ-S)2(PPh3)4CoQ2]+ fragments to form the radical cation [Pt2(μ-S)2(PPh3)4]+, which could also be generated by ESI MS analysis of [Pt2(μ-S)2(PPh3)4] in methanol-NaOH solution. In contrast, the corresponding indium(III) derivative [Pt2(μ-S)2(PPh3)4InQ2]+, and the cobalt(III) dithiocarbamate [Pt2(μ-S)2(PPh3)4Co(S2CN(CH2)4)2]+ are much more reluctant to fragment under analogous conditions, and the differences are discussed in terms of cobalt(III) redox chemistry.  相似文献   

5.
New linear and tripodal tetradentate ligands, LH2, are reported and their syntheses are described. The new linear ligands L = HSCH2CH2SCH2CH2NRCH2CR2SH, R = H, CH3) and the new tripodal ligands N(CH2CH2SH)2CH2Z, Z = CH2NH2, CH2N(CH3)2, CH2N(C2H5)2, CH2SCH3 and CO2- were synthesized. The known linear ligands HSCH2CH2NCH3(CH2)nNCH3CH2CH2SH (n = 2, 3) and HSCR2CH2NHCH2CH2NHCH2CR2SH (R = H, CH3) were also utilized. These ligands react with MoO2(acac)2 in CH3OH to yield MoO2L complexes in high yield. Infra-red and 1H nmr spectra provide evidence to supplement X-ray crystallographic results reported elsewhere for selected numbers of the series. Octahedral structures with cis MoO22+ groupings are assigned. Solution 1H nmr studies are consistent with a trans placement of the two thiolate donors in agreement with the X-ray studies.  相似文献   

6.
The kinetics of the reactions between anhydrous HCl and trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] (L=CO, N2 or H2) have been studied in thf at 25.0 °C. When L=CO, the product is [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+, and when L=H2 or N2 the product is trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Using stopped-flow spectrophotometry reveals that the protonation chemistry of trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] is complicated. It is proposed that in all cases protonation occurs initially at the nitrogen atom of the isonitrile ligand to form trans-[MoL(CNHPh)(Ph2PCH2CH2PPh2)2]+. Only when L=N2 is this single protonation sufficient to labilise L to dissociation, and subsequent binding of Cl gives trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. At high concentrations of HCl a second protonation occurs which inhibits the substitution. It is proposed that this second proton binds to the dinitrogen ligand. When L=CO or H2, a second protonation is also observed but in these cases the second protonation is proposed to occur at the carbon atom of the aminocarbyne ligand, generating trans-[MoL(CHNHPh)(Ph2PCH2CH2PPh2)2]2+. Addition of the second proton labilises the trans-H2 to dissociation, and subsequent rapid binding of Cl and dissociation of a proton yields the product trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Dissociation of L=CO does not occur from trans-[Mo(CO)(CHNHPh)(Ph2PCH2CH2PPh2)2]2+, but rather migration of the proton from carbon to molybdenum, and dissociation of the other proton produces [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+.  相似文献   

7.
The hydrothermal reactions of V2O5, HF and an organodiphosphonic acid, in the presence of appropriate templating organoammonium or metal-organic complex cations provided three new oxyfluorovanadate compounds. The V(IV) species [H3N(CH2)2NH2(CH2)2NH2(CH2)2NH3][V3O3F2(H2O){O3PCH2PO3}2]·2H2O (1·2H2O) exhibits a three-dimensional anionic framework constructed from {VO(O3PCH2PO3)}n2n chains and {VF2O4} octahedra. The molecular structure of [N(CH2CH2NH3)3]2[NH4][V3O2F6(O3PCH2PO3)2]·2H2O (2·2H2O) is characterized by the presence of unique {V3O2F6(O3PCH2PO3)2}7− clusters. The bimetallic phase [{Cu(ophen)}VOF{HO3P(CH2)5PO3}] (3) is one-dimensional with {Cu2V2O2F2(HO3PR)2(O3PR)2} cluster building blocks.  相似文献   

8.
A series of zinc(II) and cadmium(II) complexes with 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine (L), ZnLCl2, CdLCl2, ZnL2Cl2, CdL2Cl2, CdL2Cl2·0.5Me2CO·1.5H2O and CdL2Cl2·0.5CHCl3·0.5H2O, have been synthesized. The compounds ZnLCl2 and CdLCl2 were obtained in a M:L = 1:1 molar ratio in EtOH solutions, while ZnL2Cl2 and CdL2Cl2 were isolated in a M:L = 1:3 molar ratio in EtOH/Me2CO mixtures. Surprisingly, attempts to crystallize CdLCl2 from EtOH/Me2CO mixture afforded single crystals of a compound, having 1:2 metal-to-ligand stoichiometry, CdL2Cl2·0.5Me2CO·1.5H2O, instead of a complex with 1:1 stoichiometry. At the same time, crystallization of CdL2Cl2 from Me2CO/CHCl3 mixture afforded CdL2Cl2·0.5CHCl3·0.5H2O single crystals. According to X-ray crystal structure data, ZnLCl2, ZnL2Cl2, CdL2Cl2·0.5Me2CO·1.5H2O and CdL2Cl2·0.5CHCl3·0.5H2O complexes have molecular mononuclear structures. The molecules of L adopt bidentate chelating binding mode being coordinated to the metal ions through N2 atom of the pyrazole and N3 atom of the pyrimidine rings. The coordination core of zinc atom in ZnLCl2 complex is a distorted ZnN2Cl2 tetrahedron. The coordination cores of metal atoms in the structures of ZnL2Cl2, CdL2Cl2·0.5Me2CO·1.5H2O and CdL2Cl2·0.5CHCl3·0.5H2O are the distorted cis-MN4Cl2 (M = Zn, Cd) octahedra. In the structure of ZnL2Cl2 double lone pair(N(piperidine))-π(pyrimidine) interactions were observed. The photoluminescent properties of L, ZnLCl2, CdLCl2, ZnL2Cl2 and CdL2Cl2 were studied in the solid state under the same experimental conditions. These compounds were found to display bright blue luminescence. Highest relative intensity of emission was detected for ZnL2Cl2.  相似文献   

9.
In this paper, we report a study on the structure and first hyperpolarizability of C60Cl2 and C60F2. The calculation results show that the first hyperpolarizabilities of C60Cl2 and C60F2 were 172 au and 249 au, respectively. Compared with the fullerenes, the first hyperpolarizability of C60Cl2 increased from 0 au to 172 au, while the first hyperpolarizability of C60F2 increased from 0 au to 249 au. In order to further increase the first hyperpolarizability of C60Cl2 and C60F2, Li@C60Cl2 and Li@C60F2 were obtained by introducing a lithium atom to C60Cl2 and C60F2. The first hyperpolarizabilities of Li@C60Cl2 and Li@C60F2 were 2589 au and 985 au, representing a 15-fold and 3.9-fold increase, respectively, over those of C60Cl2 and C60F2. The transition energies of four molecules (C60Cl2, Li@C60Cl2, C60F2, Li@C60F2) were calculated, and were found to be 0.17866 au, 0.05229 au, 0.18385 au, and 0.05212 au, respectively. A two-level model explains why the first hyperpolarizability increases for Li@C60Cl2 and Li@C60F2.  相似文献   

10.
[Rh2(μ-Cl)2(cod)2] reacts with Ph2PCH2CH2OMe (PC2O), Ph2P(CH2)3NMe2 (PC3N), PBunPh2 or PPh3 to give [Rh(cod)L2]Cl (L = PC2O, PC3N, PBunPh2, PPh3). In the presence of hydrogen, [Rh(cod)L2]Cl is converted to [RhClH2L3]. In contrast, [Rh(cod)(PC2O)2]BPh4 reacts with H2 to give [RhH2(PC2O)2S2]BPh4 (S = solvent). With Ph2PCH2CH2NMe2 (PC2N) or Ph2PCH2CH2SMe (PC2S), [Rh2(μ-Cl)2(cod)2] reacts to form the chelate complexes cis- [Rh(PC2N)2]+ or cis-[Rh(PC2S)2]+, neither of which reacts with hydrogen under ambient conditions. The products of the reactions are characterized in situ by 31P1H NMR spectroscopy.  相似文献   

11.
Classical benzodiazepines, such as diazepam, interact with αxβ2γ2 GABAA receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α1S204Cβ2γ2, α1S205Cβ2γ2 and α1T206Cβ2γ2 and with receptors containing the homologous mutations in α2β2γ2, α3β2γ2, α5β1/2γ2 and α6β2γ2. The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α1S204Cβ2γ2, α1S205Cβ2γ2 and α1T206Cβ2γ2 and homologous positions in α2, α3, α5 and α6 with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABAA receptor isoform α1β2γ2, α2β2γ2, α3β2γ2, α5β1/2γ2 and α6β2γ2.  相似文献   

12.
The new bis(pyrazolyl)amine ligand NH2CH2CH(pz)2 (1) was prepared from the reaction of N-[2,2-bis(pyrazolyl)ethyl]-1,8-naphthalimide with hydrazine monohydrate. A substituted derivative, C6H5CH2NHCH2CH(pz)2 (2), was prepared by the reaction of 1 with benzaldehyde followed by reduction with NaBH4. Ligand 1 was also converted by two methods to the new bitopic, para-linked bis(pyrazolyl)amine ligand p-C6H4(CH2NHCH2CH(pz)2)2, (3). The reactions of the ligands 1-3 with [Cu(PPh3)2]NO3 yields {(PPh3)Cu[(pz)2CHCH2NH2]}NO3, {(PPh3)Cu[(pz)2CHCH2NHCH2C6H5]}NO3 and {[(PPh3)Cu]2[p-((pz)2CHCH2NHCH2)2C6H4]}(NO3)2·solvate, respectively. Complex {(N3)2Cu[(pz)2CHCH2NHCH2C6H5]} was obtained from a methanol solution of 2, copper(II) acetate monohydrate and sodium azide. The complex {Cd[(pz)2CHCH2NHCH2C6H5]2}(PF6)2·3C3H6O was synthesized by reaction of the protonated form of ligand 2, [(pz)2CHCH2NH2CH2C6H5]PF6, with Cd(acac)2. In all of the structures the ligands are tridentate, bonding to the metal through the lone pair on the amine group as well as through the pyrazolyl rings - they act as true scorpionates. The solid state structures all have extensive non-covalent interactions, with the N-H functional groups of the amines participating in both N-H?π and N-H?O or N-H?N hydrogen bonding interactions.  相似文献   

13.
An induction of polyacrylic acid-modified titanium dioxide with hydrogen peroxide nanoparticles (PAA-TiO2/H2O2 NPs) to a tumor exerted a therapeutic enhancement of X-ray irradiation in our previous study. To understand the mechanism of the radiosensitizing effect of PAA-TiO2/H2O2 NPs, analytical observations that included DLS, FE-SEM, FT-IR, XAFS, and Raman spectrometry were performed. In addition, highly reactive oxygen species (hROS) which PAA-TiO2/H2O2 NPs produced with X-ray irradiation were quantified by using a chemiluminescence method and a EPR spin-trapping method. We found that PAA-TiO2/H2O2 NPs have almost the same characteristics as PAA-TiO2. Surprisingly, there were no significant differences in hROS generation. However, the existence of H2O2 was confirmed in PAA-TiO2/H2O2 NPs, because spontaneous hROS production was observed w/o X-ray irradiation. In addition, PAA-TiO2/H2O2 NPs had a curious characteristic whereby they absorbed H2O2 molecules and released them gradually into a liquid phase. Based on these results, the H2O2 was continuously released from PAA-TiO2/H2O2 NPs, and then released H2O2 assumed to be functioned indirectly as a radiosensitizing factor.  相似文献   

14.
Four new three-dimensional materials built from reduced molybdenum(V) phosphates as building blocks and transitional metal (Co, Zn and Cd) complexes as linkers, (Hbpy)2[Co(bpy)(H2O)]2[Co(H2PO4)2 (HPO4)6(MoO2)12(OH)6] (1), [Co(H2O)4]2[Co(Hbpy)(H2O)]2[Co(bpy)][Co(HPO4)4(PO4)4(MoO2)12(OH)6] · 6H2O (2), Na2[Zn(Hbpy)(H2O)2]2[Zn(Hbpy)]2[Zn(HPO4)2(PO4)6(MoO2)12(OH)6] · 4H2O (3), (H2bpy)2[Cd(bpy)(H2O)]2[Cd(bpy)(H2O)2]2[Cd(HPO4)4(PO4)4(MoO2)12(OH)6] · 2H2O (4) (bpy = 4,4′-bipyridine), have been synthesized and characterized by elemental analyses, IR, TG, and single crystal X-ray diffraction. The 3-D framework of 1 is constructed from Co[P4Mo6]2 dimers bonded together with [Co(bpy)]n coordination polymer chains. In compound 2, the Co[P4Mo6]2 dimers are linked by both [Co(bpy)] complex chains and the cobalt dimers to form a 3-D framework. Compounds 1 and 2 represent the first examples of reduced molybdenum(V) phosphates decorated with transition metal complexes chains. The 3-D framework of 3 is constructed from Zn[P4Mo6]2 dimers bonded together with [Zn(bpy)] coordination complexes and [Zn(bpy)(H2O)2] complexes. In compound 4, the Cd[P4Mo6]2 dimers are coordinated with [Cd(bpy)(H2O)] and [Cd(bpy)(H2O)2] complexes to construct a 3-D structure. To our best knowledge, it is the first time that linear ligand 4,4′-bpy molecules have been grafted into the backbone of reduced molybdenum phosphates. Furthermore, the magnetic properties of compounds 1 and 2 are reported.  相似文献   

15.
Hydrothermal reactions of lead(II) acetate and HO2C(CH2)3N(CH2PO3H2)2 at 170 and 140 °C, respectively, resulted in two different lead diphosphonates, namely, Pb2[NH(CH2PO3)2] · 2H2O (1), in which the butyric acid moiety of the HO2C(CH2)3N(CH2PO3H2)2 has been cleaved and a novel layered compound, Pb3[HO2C(CH2)3NH(CH2PO3)2]2 · 2H2O (2). Their crystal structures have been determined by single crystal X-ray diffraction. In compound 1, the interconnection of the lead(II) ions by bridging amino-diphosphonate ligands leads to the formation of a 3D network. Compound 2 features an unusual triple-layer structure with the non-coordinated butyric acid moieties as pendant groups between the layers.  相似文献   

16.
The solvatothermal reactions of V2O5, the appropriate organoamine and HF in the temperature range 100-180 °C yielded a series of vanadium fluorides and oxyfluorides. The compounds [NH4][H3N(CH2)2NH3][VF6] (1) and [H3N(CH2)2NH3][VF5(H2O)] (2) contain mononuclear V(III) anions, while [H3N(CH2)2NH2(CH2)2NH3]2 [VF5(H2O)]2[VOF4(H2O)] (3) exhibits both V(IV) and V(III) mononuclear anions. Both compound 4, [H3NCH2(C6H4)CH2NH3][VOF4]·H2O (4·H2O) and compound 5, [HN(C2H4)3NH][V2O2F6 (H2O)2] (5) contain binuclear anions constructed from edge-sharing V(IV) octahedra. In contrast, [H3N(CH2)2NH2(CH2)2NH3]2[V4O4F14(H2O)2], (6) exhibits a tetranuclear unit of edge- and corner-sharing V(IV) octahedra. Compound 7, [H3N(CH2)2NH2][VF5], contains chains of corner-sharing {VIVF6} octahedra, while [H2N(C2H4)2NH2]3[V4F17O]·1.5H2O (8·1.5H2O) is two-dimensional with a layer of V(III) and V(IV) octahedra in an edge- and corner-sharing arrangement. In the case of [H3N(CH2)2NH3][V2O6] (9), there was no fluoride incorporation, and the anion is a one-dimensional chain of corner-sharing V(V) tetrahedra.  相似文献   

17.
Base-assisted reduction of [Ru(CO)3Cl2]2 in the presence of NP-Me2 (2,7-dimethyl-1,8-naphthyridine) in thf provides an unsupported diruthenium(I) complex [Ru2(CO)4Cl2(NP-Me2)2] (1). Two NP-Me2 and four carbonyls bind at equatorial positions and two chlorides occupy sites trans to the Ru-Ru single bond. Reaction of [Ru(CO)3Cl2]2, TlOTf, KOH and NP-Me2 in acetonitrile, in a sealed container, affords a bicarbonate bridged diruthenium(I) complex [Ru2(CO)2(μ-CO)2(μ-O2COH)(NP-Me2)2](OTf) (2). The in situ generated CO2 is the source for bicarbonate under basic reaction medium. Isolation of 2 validates the decarboxylation step in the base-assisted reduction of [RuII(CO)3Cl2]2 → [RuI2(CO)4]2+.  相似文献   

18.
The coordination chemistry of thioether functionalized cyclodiphosphazane ligand, cis-{tBuNP(OCH2CH2SCH3)}2 (1) is described. The reactions of 1 with [Pd (COD)Cl2] in 1:1, 1:2 and 2:1 M ratios afforded cis-[PdCl2{tBuNP(OCH2CH2SCH3)}2] (2), cis-[{PdCl2}2{tBuNP(OCH2CH2SCH3)}2] (3) and trans-[PdCl2{(tBuNP(OCH2CH2SCH3))2}2] (4), respectively. Treatment of 1 with [Pd(PEt3)Cl2]2 or [PdCl(η3-C3H5)]2 in appropriate molar ratios produce the mono- and binuclear complexes [PdCl2(PEt3{tBuNP(OCH2CH2SCH3)}2] (5) and [{PdCl(η3-C3H5)}2{tBuNP(OCH2CH2SCH3)}2] (6) in good yield. The reaction of 1 with [{Ru(p-cymene)Cl2}2] afforded the mononuclear cationic complex, [{(p-cymene)RuCl{tBuNP(OCH2CH2SCH3)}2]Cl (7), whereas the reactions of [Rh(COD)Cl]2, [Pt(COD)Cl2] and [Au(SMe2)Cl] with 1 yielded the corresponding P-coordinated neutral complexes, [RhCl(COD){tBuNP(OCH2CH2SCH3)}2] (8)cis-[PtCl2{tBuNP(OCH2CH2SCH3)}2] (9), respectively. The binuclear palladium(II) complex 3 was found to be an effective catalyst for the Suzuki-Miyaura cross-coupling reactions.  相似文献   

19.
Three mono- and dinuclear nickel complexes with dichalcogenolate o-carboranyl ligands were synthesized and characterized by X-ray crystallography. The reactions of Ni(COD)2(COD=1,5-octadiene) with [(THF)3LiE2C2B10H10Li(THF)]2 (E=S, Se) in THF in the presence of air in different ratios afforded the mono- and dinuclear nickel complexes of formulae Li(THF)4]2[Ni(E2C2B10H10)2] (E=S, 1a; E=Se, 1b) and [Li(THF)4]2[Ni2(E2C2B10H10)3] (E=S, 2a; E=Se, 2b). In 2a, two nickel atoms are connected by one chalcogen (η12-S2C2B10H10) bridging ligand with strong metal-metal interaction. Complex of formula (PPh3)2Ni(S2C2B10H10) · 0.5THF (3a) was also obtained from the reaction of (PPh3)2NiCl2 and [(THF)3LiS2C2B10H10Li(THF)]2.  相似文献   

20.
We investigated the reaction mechanism and thermochemical property of conjugated dienes or mono-olefins with nickel dithiolenes (Ni(S2C2R2)2) using density functional theory. The reactions between conjugated dienes and nickel dithiolenes are concerted reactions. The thermochemical property study shows that the introduction of electron-withdrawing groups (–CF3 or –CN) to nickel dithiolene (Ni(S2C2H2)2) not only significantly lowers the activation energy barrier but also strongly stabilises the products. The introduction of electron-donating group (–CH3) to butadiene has the same effect. So, we conclude that the reactions between nickel dithiolenes and conjugated dienes are electrophilic cycloaddition. Mono-olefins can add to nickel dithiolenes through interligand pathway, which is a two-step process or through intraligand pathway, which is a one-step process. The thermochemical property study shows that the activation enthalpy for the reaction of butadiene with Ni(S2C2(CF3)2)2 is much lower than those of C4 mono-olefins with Ni(S2C2(CF3)2)2 for both interligand addition and intraligand addition. The Gibbs free energy for the reaction of butadiene with Ni(S2C2(CF3)2)2 is also more favourable than those of C4 mono-olefins with Ni(S2C2(CF3)2)2. It is the very preferential pathway for Ni(S2C2(CF3)2)2 to bind butadiene than C4 mono-olefins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号