首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Removal of the posterior half of the chick wing bud between stages 17-22 results in failure of the anterior distal tissue to survive and differentiate. This observation has been interpreted in terms of a requirement by the anterior half of a factor supplied by the posterior half of the limb containing the zone of polarizing activity (ZPA). This relationship has been tested by grafting ZPA tissue to the posterior surface of the anterior half after posterior half removal. Grafts made proximally on the cut surface did not significantly improve survival and development, nor did the ZPA prevent the expansion of the cell death in the ANZ beyond its normal boundaries into the distal mesenchyme. However, when grafted distally the ZPA inhibited cell death in the apical mesenchyme and caused the anterior mesenchyme to change its normal prospective fate (radius and digit 2). In all these cases, in addition to digit 2, digit 3 and frequently also digit 4 differentiated. The anterior half went on to develop a full set of digits and zeugopod parts in almost 50% of cases, although no skeleton resulting from this regulation of the anterior half had totally size regulated. These results demonstrate a developmental 'rescue' effect by the ZPA, and further support the view that the ZPA has a central and unique function in normal limb bud development, controlling survival and differentiation of the mesenchyme along the anteroposterior axis.  相似文献   

2.
H Aono  H Ide 《Developmental biology》1988,128(1):136-141
Limb bud mesoderm of stage 22-23 embryos was dissected into four pieces along the anteroposterior axis and dissociated cells of each region were separately cultured under various conditions. When the cells were cultured in medium containing 0.1% fetal calf serum (serum-poor medium) only a slight increase in cell number occurred in the cultures of all four regions. However, when the cells were cultured in medium containing 10% FCS, only cells of two central regions proliferated rapidly, and no growth promotion was observed in cells in the most anterior and posterior regions. Using the serum-poor medium, we examined the growth-promoting effects of cocultured limb bud fragments and of some growth factors on the cells of four regions. Anterior, distal, and proximal fragments promoted cell proliferation and their promotive effect on the cells of each region was equal. On the other hand, posterior fragments (containing ZPA) showed stronger promotive effects on preaxial cells than on postaxial cells. For comparison with the growth-promotive effect of the posterior fragment, fibroblast growth factor (FGF), epidermal growth factor (EGF), insulin, and retinoic acid were tested in cell culture. FGF showed position-dependent growth promotion, while EGF and insulin promoted growth in the cells of all four regions to a similar degree. Retinoic acid showed no effect on cell growth at low concentrations, and was rather toxic at high concentrations. These results suggest that the cells of the posterior region secrete an FGF-like growth factor(s), which controls normal limb development and experimental duplicate formation.  相似文献   

3.
Wedges of anterior quail mesoderm grafted into posterior slits in the wing buds of chick embryo hosts result in the formation of rods and nodules of supernumerary cartilage in a high percentage of cases. Identifiable digits do not form unless the ectoderm is allowed to remain on the grafts. Control experiments have shown that wedges of anterior or posterior wing mesoderm placed into homologous locations of host wing buds produce few or no supernumerary skeletal structures. Anterior-to-posterior grafts of stage 17 mesoderm evoke a 71.4% incidence of supernumerary cartilage. This percentage increases to 100% with stage 22 donor mesoderm. The percentage of supernumerary structures formed declines markedly with donor mesoderm of stages 24-30. By stages 35-36, only 10% of the grafts result in the formation of supernumerary structures. The period of decline coincides with the onset of overt cytodifferentiation within the donor mesoderm.  相似文献   

4.
The negative results of assays for polarizing activity along the posterior border of the chick wing 24 and 48 hours after removal of the polarizing zone demonstrate that this zone is not regenerated following removal. These results, and the fact that normal wing development can occur after polarizing zone removal from stages 15 through 24 wing buds, indicate that during these stages the polarizing zone has no direct role in normal development of the limb bud. It is speculated that the polarizing zone is effective only during limb induction and that after this time it exists in latent or residual form.  相似文献   

5.
The influence of cells of the polarizing zone mesoderm on the morphogenesis of recombinant chick limbs was studied. The recombinant buds were composed of leg bud ectoderm and different regions of the wing bud mesoderm, which had been dissociated and reaggregated. In any case where the polarizing zone mesoderm was coaggregated with the wing mesoderm the morphogenetic capabilities of the recombinant were reduced. This was the case with postaxial mesoderm, preaxial mesoderm plus polarizing tissue, and postaxial mesoderm from which a piece of the nonpolarizing mesoderm (comparable in size to the polarizing zone) had been removed. All of these gave outgrowths with digits in only a very low percentage of cases. In contrast, those recombinants without polarizing mesoderm developed outgrowths with digits in a high percentage of cases, indicating good morphogenesis. Finally, if the polarizing zone were removed prior to dissociation, the recombinant limb, composed of the total remaining wing bud mesoderm plus leg bud ectoderm, exhibited a higher percentage of complete morphogenesis than if the polarizing zone had been part of the recombinant.It is clear that cells of the polarizing zone, when dissociated, and coaggregated with wing mesoderm, are inhibitory to the morphogenetic performance of that mesoderm in the recombinant limb situation.  相似文献   

6.
We have devised an in vitro bioassay for limb bud polarizing activity in the chick embryo. This assay has proven to be a relatively quick and effective test for a morphogenetic factor asymmetrically distributed in the limb bud which is capable of maintaining or thickening the apical ectodermal ridge.A small section of the preaxial border of the chick embryo wing bud was cultured alone, with tissue from the posterior border, mid-dorsal or anterior corner of a second donor wing, or from the flank. The tissue from the preaxial border (responding tissue) consisted of mesoderm with overlying ectoderm and apical ectodermal ridge. When the responding tissue was cultured alone, with flank, or with anterior corner limb tissue, the apical ectodermal ridge flattened in 24–36 hr and many macrophages appeared in the underlying mesoderm. When cultured with posterior border limb tissue however, the apical ridge of the responding tissue remained thickened for up to 48 hr., and no macrophages appear in the underlying mesoderm. The behavior of responding tissue was intermediate between these two extremes when cultured with mid-dorsal limb tissue. The morphogenetic activity assayed by this procedure thus seems to be present as a gradient in the wing bud, with activity decreasing from posterior to anterior. Contact with the responding tissue is not required to enable posterior border tissue to elicit ridge thickening and inhibit the cell death.  相似文献   

7.
The formation of supernumerary limbs and limb structures was studied by juxtaposing normally nonadjacent embryonic chick limb bud tissue. A “wedge” (ectoderm and mesoderm) of anterior or mid donor right wing bud (stage 21) was inserted in a slit made in a host right limb bud (stage 21) at the same position as its position of origin or to a more posterior position. The AER of the donor tissue and host wing bud were aligned with each other. Donor tissue was grafted with its dorsalventral polarity the same as the host's limb bud or reversed to that of the host's. Depending on the position of origin of the donor limb bud tissue and the position to which it was transplanted in a host, supernumerary wings or wing structures formed. Furthermore, depending on the orientation of the graft in the host, supernumerary limbs with either left or right asymmetry developed. The results of experiments performed here are considered in light of two current models which have been used to describe supernumerary limb formation: one based on local, short-range, cell-cell interactions and the other based on long-range positional signaling via a diffusible morphogen.  相似文献   

8.
Apical ectodermal ridges (AERs) isolated from 3- to 4-day chick and quail embryos were prepared by means of trypsinization and microdissection and then were grafted to the dorsal or ventral side of a host chick wing bud. They induced supernumerary limb outgrowths from the host bud showing, respectively, a bidorsal or biventral organization, as determined by the patterns of feather germs. The grafted ridge cells persisted, as revealed by histological sections of supernumerary chick limb parts growing under the influence of quail AERs, whose cells are readily distinguished after application of the Feulgen reagent.These results show that the AER induces limb outgrowth regardless of whether it is associated with dorsal or ventral limb ectoderm and that its continued existence is not dependent on contributions of ectodermal cells from the opposed ectodermal faces of the limb bud. The AER is pictured as maintaining the subjacent mesoderm in a condition of developmental plasticity without specifying its differentiation with respect to the proximodistal axis. It remains uncertain whether the positional values of cells that develop under the influence of the AER arise within these cells themselves or appear in response to influences from proximal sources.  相似文献   

9.
The relationship between the position transplanted in a host limb bud, the orientation of a graft in a host limb bud, and the extra limb structures formed was studied by juxtaposing normally nonadjacent embryonic chick wing bud tissue. In one series of transplantation operations, two different wedges (ectoderm and mesoderm) of stage 21 right donor posterior wing bud tissue were transplanted to the middle of a host stage 20 to 22 right wing bud such that the dorsal-ventral polarity of the graft and host were the same or reversed. The results of these transplantation operations show that the formation of supernumerary limb structures depends on the position of origin of the donor tissue, the anterior-posterior position transplanted in a host limb bud, and the orientation of the graft in the host limb bud. In a second series of transplantation operations, the relationship between the proximodistal position where posterior donor tissue is transplanted in an anterior host site and the extra structures formed was studied. A wedge of posterior stage 21 right wing bud tissue was transplanted to an anterior proximal or anterior distal site of a stage 22 to 24 host right wing bud. The results of these transplantation operations show that when the donor tissue is transplanted to an anterior proximal position in a host wing bud, then limbs with only a duplicated humerus result, whereas, when transplanted to an anterior distal position, then limbs with a duplicated forearm element and extra digits result.  相似文献   

10.
In the developing chick wing, the use of antisense oligodeoxynucleotides to transiently knock down the expression of the gap junction protein, connexin43 (Cx43), results in limb patterning defects, including deletion of the anterior digits. To understand more about how such defects arise, the effects of transient Cx43 knockdown on the expression patterns of several genes known to play pivotal roles in limb formation were examined. Sonic hedgehog (Shh), which is normally expressed in the zone of polarizing activity (ZPA) and is required to maintain both the ZPA and the apical ectodermal ridge (AER), was found to be downregulated in treated limbs within 30 h. Bone morphogenetic protein-2 (Bmp-2), a gene downstream of Shh, was similarly downregulated. Fibroblast growth factor-8 expression, however, was unaltered 30 h after treatment but was greatly reduced at 48 h post-treatment, when the AER begins to regress. Expressions of Bmp-4 and Muscle segment homeobox-like gene (Msx-1) were not affected at any of the time points examined. Cx43 expression is therefore involved in some, but not all patterning cascades, and appears to play a role in the regulation of ZPA activity.  相似文献   

11.
Indirect antibody labeling techniques were used to determine when cells in the chick embryo wing bud begin to synthesize troponin. Frozen sections of stage 22 through stage 27 wing buds were treated with antibodies to the troponin complex and fluorescein-labeled antiimmunoglobulin. Cells producing detectable quantities of troponin were found first in late stage 24 or early stage 25 wing buds; all wing buds stage 25 and older contained labeled cells. Cells synthesizing troponin were initially localized in the muscle-forming areas of the wing bud nearest to the body wall. As the wing bud developed, cells located in more distal areas of the wing bud became labeled with fluorescent antibody, and the number of cells engaged in troponin synthesis increased in all areas. At all stages in which labeling occurred, some cells contained fluorescent cross-striations. When placed in the context of recent studies on the appearance of myofibrillar proteins, these results indicate that myogenic cells in the chick limb bud begin to synthesize large quantities of troponin at approximately the same time as the other muscle contractile proteins.  相似文献   

12.
Homeoproteins have been shown to be expressed in a position-specific manner along the anterior-posterior axis in the developing chick feather bud, as seen also in the developing limb bud. These facts raise the possibility that there may be common mechanistic features in the establishment of the anterior-posterior polarity between both organs. In order to investigate this possibility, feather bud tissues were transplanted into the anterior region of limb buds to determine whether feather bud tissues possess properties such as the zone of polarizing activity of the limb bud. The manipulated limb bud formed a mirror image duplication of the skeletal elements, mainly (2)2234 digit pattern or sometimes 3(2)234. Both the anterior and posterior halves of feather bud tissue exhibited almost equal activity in inducing ectopic skeletal elements. Hox d-12 and Hox a-13 were expressed coordinately around the transplanted site of the operated limb bud. This secondary axis-inducing activity of the feather bud was enhanced when grafts were pretreated with trypsin. In contrast, the presumptive feather bud tissue and inter-feather bud tissue did not induce a secondary axis of the limb bud. These results suggest that the feather bud contains a region that exerts polarizing activity and that this region may play key roles in the formation of the anterior-posterior and, if it exists, proximal-distal axis of the feather bud, possibly via the regulation of region specific expression of Hox genes.  相似文献   

13.
Osteogenin is a protein isolated from demineralized bovine bone matrix. When implanted in rats, osteogenin induces the differentiation of cartilage and formation of endochondral bone. When added to stage 24 and 25 chick limb bud mesoderm cells in culture, it stimulated synthesis of sulfated proteoglycans by over 10-fold without stimulating cell division. The increase was detected after only 2 days in culture. Morphologically, in the presence of osteogenin, all cells in the culture appeared to form cartilage, rather than the nodules of cartilage surrounded by noncartilage areas in control cultures. The distribution of type II collagen correlated with the morphological differentiation of cartilage. When nonchondrocyte and chondrocyte cell populations were separated, osteogenin stimulated sulfated proteoglycan synthesis in all populations of cells. However, the greatest stimulation (24-fold) was seen in the originally nonchondrocyte population, which apparently still had some potential to form cartilage. In this study, chick limb bud mesoderm cells in vitro responded to osteogenin, a protein derived from adult bovine bone matrix. The cells that were responsive included those that initially did not form cartilage. Osteogenin belongs to a superfamily of proteins, many of which are important in development. It is possible that osteogenin has a role in embryonic cartilage development.  相似文献   

14.
The location of the prospective cartilage-forming regions in the embryonic chick wing bud was ascertained by implantation of blocks of wing mesenchyme labeled with tritiated thymidine during the early stages of wing development. The position of the implanted cells was determined by autoradiography, and the location of the implanted block in the limb and its relation to the cartilaginous bones was determined by reconstruction of the host limb from serial sections. The areas corresponding to all of the future wing bones, including the digits, were mapped at each stage from stage 18 to stage 24. Growth of the wing and the prospective bone areas was found to be almost exclusively parallel to an axis perpendicular to the base of the limb. The rate of growth in all areas of the wing reflected the rate of cell division, and all changes in the rate of growth corresponded to changes in the number of dividing cells in the wing and each of the prospective bone regions. Differentiative changes and changes in the growth rate are initiated at a constant distance of 0.4-0.5 mm from the apical ectodermal ridge. These results, considered in conjunction with results of earlier studies in this and other laboratories, suggest that the definitive morphogenetic pattern of the limb arises from four component processes; polarized growth, changes in cell proliferation, cell death, and cytodifferentiation.  相似文献   

15.
A central feature of the tetrapod body plan is that two pairs of limbs develop at specific positions along the head-to-tail axis. However, the potential to form limbs in chick embryos is more widespread. This could have implications for understanding the basis of limb abnormalities. Here we extend the analysis to mouse embryos and examine systematically the potential of tissues in different regions outside the limbs to contribute to limb structures. We show that the ability of ectoderm to form an apical ridge in response to FGF4 in both mouse and chick embryos exists throughout the flank as does ability of mesenchyme to provide a polarizing region signal. In addition, neck tissue has weak polarizing activity. We show, in chick embryos, that polarizing activity of tissues correlates with the ability either to express Shh or to induce Shh expression. We also show that cells from chick tail can give rise to limb structures. Taken together these observations suggest that naturally occurring polydactyly could involve recruitment of cells from regions adjacent to the limb buds. We show that cells from neck, flank and tail can migrate into limb buds in response to FGF4, which mimics extension of the apical ectodermal ridge. Furthermore, when we apply simultaneously a polarizing signal and a limb induction signal to early chick flank, this leads to limb duplications.  相似文献   

16.
17.
Homeobox gene XlHbox 1 is expressed in a mesodermal gradient in vertebrate forelimbs with maximal expression anteriorly and proximally and may encode positional values. In chick wing buds, anterior cells can be reprogrammed to form posterior structures by grafts of polarizing region tissue and by beads soaked in retinoic acid (RA), which is a good candidate for an endogenous morphogen. Applications of RA anteriorly or at the bud apex, treatments which produce duplicated digits or truncations respectively, substantially increase the extent of mesodermal XlHbox 1 expression. Polarizing region grafts that also produce additional digits lead to a moderate increase. The effects of RA application and the behaviour of transplanted tissue show that only anterior cells are competent to express XlHbox 1 and that expression is cell autonomous. Ectodermal expression in wing buds is enhanced by RA but not by polarizing region grafts and ectoderm/mesoderm recombinations show that the mesoderm is irreversibly affected. The changes in mesodermal expression do not fit the predictions of the simple model that XlHbox 1 encodes anterior positional values but are correlated with a series of novel malformations of the shoulder girdle which, in normal wing buds, is derived from cells expressing XlHbox 1.  相似文献   

18.
The phenomenon of "programmed cell death" in the posterior necrotic zone (PNZ) of the chick wing bud was reexamined. Prospective PNZs (pPNZs) were excised from stage 18-21 donor wings and observed for signs of necrosis in vitro. Cell death was quantified by a chromium-51 release assay. Prospective PNZs from the youngest donors (stage 18) showed no signs of death above control levels, while necrosis increased in vitro with increasing donor age. Cell death in the PNZ at stage 24 could be inhibited by removing the overlying ridge at stage 20 or 21. These results suggest that cell death in the PNZ is not rigidly determined early in development as previous studies suggest, but remains responsive to the cellular environment until shortly before the cells die.  相似文献   

19.
The initiation of limb bud outgrowth in the embryonic chick   总被引:2,自引:0,他引:2  
  相似文献   

20.
Appearance of myosin in the chick limb bud   总被引:2,自引:0,他引:2  
Quantitative microcomplement fixation has been used to detect the appearance of myosin in the chick embryonic limb bud. It has been shown that myosin or a myosinlike molecule is present by stage 23, before muscle can be distinguished histologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号