首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
D G Panaccione  R M Hanau 《Gene》1990,86(2):163-170
We have cloned and sequenced two beta-tubulin genes, TUB1 and TUB2, from the phytopathogenic fungus, Colletotrichum graminicola. The nucleotide sequences of the coding regions of the two genes are only 72.8% homologous. This divergence is reflected in the deduced amino acid (aa) sequences which differ at 94 aa residues. Comparison with the aa sequences of other fungal beta-tubulins indicates that the C. graminicola TUB2 gene encodes a conserved isotype, whereas the C. graminicola TUB1 product is highly divergent. Both genes contain six identically placed introns and the position of each intron is conserved in other fungal beta-tubulin genes. Also typical of other fungal beta-tubulin genes, there is a pronounced bias in codon usage in the C. graminicola TUB2 gene; there is a lesser codon bias in TUB1 from C. graminicola. Both C. graminicola beta-tubulin genes are transcribed and yield similar sized messages.  相似文献   

3.
H A Smith  J W Gorman  Y Koltin  J A Gorman 《Gene》1990,90(1):115-123
Expression of the beta-tubulin-encoding gene (TUB2) of Candida albicans has been examined in Saccharomyces cerevisiae. Overexpression of the TUB2 gene of C. albicans, as well as that of S. cerevisiae, was found to be lethal. Chromosomal integration of the C. albicans TUB2 gene into a strain in which the native TUB2 gene had been deleted led to functional complementation. The results demonstrate that correct splicing of the two introns present in the C. albicans TUB2 gene occurs in the heterologous host strain containing this gene. Such strains are supersensitive to the tubulin-binding agent benomyl, indicating that the natural resistance of C. albicans to benomyl is not related to the structure of its beta-tubulin.  相似文献   

4.
A β-tubulin gene (TUB1) from the basidiomycete Pleurotus sajor-caju was sequenced. TUB1 encodes a 446-amino-acid protein. The coding region is interrupted by 9 introns, all of which had a 5'-GTRNGT…YAG-3' sequence at the boundaries. Locations of the introns in TUB1 were common between the β-tubulin genes of other basidiomycetes, but not with animals, ascomycetes, or plants. This suggests that the introns were inserted independently into the β-tubulin gene after these divisions had diverged.  相似文献   

5.
Two alpha-tubulin genes from the budding yeast Saccharomyces cerevisiae were identified and cloned by cross-species DNA homology. Nucleotide sequencing studies revealed that the two genes, named TUB1 and TUB3, encoded gene products of 447 and 445 amino acids, respectively, that are highly homologous to alpha-tubulins from other species. Comparison of the sequences of the two genes revealed a 19% divergence between the nucleotide sequences and a 10% divergence between the amino acid sequences. Each gene had a single intervening sequence, located at an identical position in codon 9. Cell fractionation studies showed that both gene products were present in yeast microtubules. These two genes, along with the TUB2 beta-tubulin gene, probably encode the entire complement of tubulin in budding yeast cells.  相似文献   

6.
7.
beta-tubulin of budding yeast Saccharomyces cerevisiae is a polypeptide of 457 amino acids encoded by the unique gene TUB2. We investigated the function of the carboxy-terminal part of yeast beta-tubulin corresponding to the carboxy-terminal variable domain of mammalian and avian beta-tubulins. The GAA codon for Glu-431 of TUB2 was altered to TAA termination codon by using in vitro site-directed mutagenesis so that the 27-amino acid residues of the carboxyl terminus was truncated when expressed. The mutagenized TUB2 gene (tub2(T430)) was introduced into a haploid strain in which the original TUB2 gene had been disrupted. The tub2(T430) haploid strain grows normally less than 30 but not at 37 degrees C. The truncation of the carboxyl terminus caused hypersensitivity to antimitotic drugs and low spore viability at the permissive temperature for vegetative growth. Immunofluorescence labeling with antitubulin antibody and DNA staining with 4',6'-diamidino-2-phenylindole showed that in these cells at 37 degrees C, formation of spindle microtubules and nuclear division was inhibited and cytoplasmic microtubule distribution was aberrant. These results suggest that functions of the carboxy-terminal domain of yeast beta-tubulin are necessary for cells growing under suboptimal growth conditions although it is not essential for growth under the optimal growth conditions. Cells bearing tub2(411), a tub2 gene in which the GAA codon for Glu-412 was altered to TAA were no more viable at any temperature. In addition, a haploid strain carrying two functional beta-tubulin genes is not viable.  相似文献   

8.
The consequences of altering the levels of alpha- and beta-tubulin in Saccharomyces cerevisiae were examined by constructing fusions of the structural genes encoding the tubulins to strong galactose-inducible promoters. Overexpression of beta-tubulin (TUB2) was lethal: cells arrested in the G2 stage of the cell cycle exhibited an increased frequency of chromosome loss, were devoid of microtubules, and accumulated beta-tubulin in a novel structure. Overexpression of the major alpha-tubulin gene (TUB1) was not lethal and did not affect chromosome segregation. The rate of alpha-tubulin mRNA and protein synthesis was increased, but the protein did not accumulate. Overexpression of both alpha- and beta-tubulin together resulted in arrested cell division, and cells accumulated excess tubules that contained both alpha- and beta-tubulin. Transient overexpression of both tubulins resulted in a high frequency of chromosome loss. These data suggest that strong selective pressure exists to prevent excess accumulation of microtubules or beta-tubulin and suggest a model by which this goal may be achieved by selective degradation of unassembled alpha-tubulin. Furthermore, the phenotype of beta-tubulin overexpression is similar to the phenotype of a beta-tubulin deficiency. These results add to a number of recent studies demonstrating that mutant phenotypes generated by overexpression can be informative about the function of the gene product.  相似文献   

9.
T. Stearns  D. Botstein 《Genetics》1988,119(2):249-260
Mutations in genes of Saccharomyces cerevisiae that code for proteins that interact with beta-tubulin were sought by screening for unlinked mutations that fail to complement mutations in the single beta-tubulin-encoding gene (TUB2). Among the first three noncomplementing mutations examined, two are linked to TUB2 while one is unlinked. The unlinked mutation was shown to be a conditional-lethal allele of the major alpha-tubulin-encoding gene (TUB1) and represents the first such mutation in that gene. The tub1-1 mutation itself causes a cold-sensitive cell-cycle arrest, and confers supersensitivity to the antimicrotubule drug benomyl. These phenotypes occur in the presence of a wild-type copy of the minor alpha-tubulin-encoding gene, TUB3; the combination of tub1-1 and a tub3 null mutation is inviable in haploids. Through further application of this method, new mutations in TUB2 and TUB3 were isolated as unlinked noncomplementers of tub1-1. The noncomplementation between tub1 and tub2 mutations is gene specific and allele specific, suggesting that the phenotype is due to an interaction at the protein level. We conclude that isolation of unlinked noncomplementing mutations is likely to be a generally useful method for isolating mutations in interacting gene products.  相似文献   

10.
P. J. Schatz  F. Solomon    D. Botstein 《Genetics》1988,120(3):681-695
Microtubules in yeast are functional components of the mitotic and meiotic spindles and are essential for nuclear movement during cell division and mating. We have isolated 70 conditional-lethal mutations in the TUB1 alpha-tubulin gene of the yeast Saccharomyces cerevisiae using a plasmid replacement technique. Of the 70 mutations isolated, 67 resulted in cold-sensitivity, one resulted in temperature-sensitivity, and two resulted in both. Fine-structure mapping revealed that the mutations were located throughout the TUB1 gene. We characterized the phenotypes caused by 38 of the mutations after shifts of mutants to the nonpermissive temperature. Populations of temperature-shifted mutant cells contained an excess of large-budded cells with undivided nuclei, consistent with the previously determined role of microtubules in yeast mitosis. Several of the mutants arrested growth with a sufficiently uniform morphology to indicate that TUB1 has at least one specific role in the progression of the yeast cell cycle. A number of the mutants had gross defects in microtubule assembly at the restrictive temperature, some with no microtubules and some with excess microtubules. Other mutants contained disorganized microtubules and nuclei. There were no obvious correlations between these phenotypes and the map positions of the mutations. Greater than 90% of the mutants examined were hypersensitive to the antimicrotubule drug benomyl. Mutations that suppressed the cold-sensitive phenotypes of two of the TUB1 alleles occurred in TUB2, the single structural gene specifying beta-tubulin.  相似文献   

11.
Of 173 mutants of Saccharomyces cerevisiae resistant to the antimitotic drug benomyl (BenR), six also conferred cold-sensitivity for growth and three others conferred temperature-sensitivity for growth in the absence of benomyl. All of the benR mutations tested, including the nine conditional-lethal mutations, were shown to be in the same gene. This gene, TUB2, has previously been molecularly cloned and identified as the yeast structural gene encoding beta-tubulin. Four of the conditional-lethal alleles of TUB2 were mapped to particular restriction fragments within the gene. One of these mutations was cloned and sequenced, revealing a single amino acid change, from arginine to histidine at amino acid position 241, which is responsible for both the BenR and the cold-sensitive lethal phenotypes. The terminal arrest morphology of conditional-lethal alleles of TUB2 at their restrictive temperature showed a characteristic cell-division-cycle defect, suggesting a requirement for tubulin function primarily in mitosis during the vegetative growth cycle. The TUB2 gene was genetically mapped to the distal left arm of chromosome VI, very near the actin gene, ACT1; no CDC (cell-division-cycle) loci have been mapped previously to this location. TUB2 is thus the first cell-division-cycle gene known to encode a cytoskeletal protein that has been identified in S. cerevisiae.  相似文献   

12.
《The Journal of cell biology》1994,127(6):1973-1984
We have isolated a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in S. cerevisiae, that confers a specific defect in spindle microtubule function. At 14 degrees C, tub2-406 cells lack a normal bipolar spindle but do assemble functional cytoplasmic microtubules. In an attempt to identify proteins that are important for spindle assembly, we screened for suppressors of the cold-sensitivity of tub2-406 and obtained four alleles of a novel gene, STU1. Genetic interactions between stu1 alleles and alleles of TUB1 and TUB2 suggest that Stu1p specifically interacts with microtubules. STU1 is essential for growth and disruption of STU1 causes defects in spindle assembly that are similar to those produced by the tub2-406 mutation. The nucleotide sequence of the STU1 gene predicts a protein product of 174 kD with no significant similarity to known proteins. An epitope-tagged Stulp colocalizes with microtubules in the mitotic spindle of yeast. These results demonstrate that Stulp is an essential component of the yeast mitotic spindle.  相似文献   

13.
14.
15.
Aspergillus nidulans beta-tubulin genes are unusually divergent   总被引:14,自引:0,他引:14  
G S May  M L Tsang  H Smith  S Fidel  N R Morris 《Gene》1987,55(2-3):231-243
  相似文献   

16.
We have cloned and analyzed alpha-, beta- and gamma-tubulin genes from Euglena gracilis. The gamma-tubulin genes are 6-10 times longer than the alpha- and beta-tubulin genes, owing to the presence of numerous introns. These introns are all of the conventional type, whereas the alpha- and beta-tubulin genes contain both conventional and non-conventional introns. This is the first time that both types of introns have been found in the same gene. In the E. gracilis genome there are two genes for each tubulin, but the level of gamma-tubulin mRNA is 60 times lower than that of alpha- and beta-tubulin RNAs. The distinctive structure of gamma-tubulin genes prompted us to investigate the maturation of its pre-mRNA. We show that trans-splicing occurs before the cis-splicing of the first intron of the pre-mRNA and that polyadenylation occurs after the cis-splicing of the last intron of the pre-mRNA. We propose that mRNA processing is likely to play a role in regulating the amounts of different tubulins in E. gracilis.  相似文献   

17.
One gene and two cDNAs encoding three different -tubulins (TUB1, TUB2, TUB3) of pea have been cloned and sequenced. The derived amino acid sequences show between 92% and 96% identity relative to one another and to most other -tubulins of higher plants and green algae. Two notable extremes are the high similarity of 98% between pea TUB3 and maize -tubulin 2 and the relatively low similarity (90%) of the hypocotyl-specific -tubulin 1 of soybean to the pea sequences. These similarities do not reflect the molecular phylogeny but rather differences in evolutionary rate of -tubulins which are differentially regulated during plant development. Genomic Southern blots reveal a -tubulin gene family in pea with at least four separate members including two TUB1 genes, one TUB2 gene and one TUB3 gene. This contradicts an earlier report by Rahaet al. (Plant Mol Biol 9: 565–571, 1987) suggesting a tandem repeat organization of tubulin genes in pea. The pea TUB1 gene has two introns in identical positions compared to the -tubulin genes fromArabidopsis and soybean. In an attempt to reconstruct the universal ancestor of all present-day tubulin genes the intron positions in 38 different - and -tubulin genes from plants, animals, fungi and protozoa were compared. This comparison shows that the primordial gene probably had many introns (more than 20) separating protoexons of 15 to 20 codons in agreement with the exon theory of genes. It also supports the view that, during the course of evolutions introns have shifted and were deleted preferentially in the 3 part of the genes. Similar observations have been made previously for other genes. They can be interpreted in terms of a homologous recombination of genes with their modified (incorrectly spliced) and reverse-transcribed pre-mRNAs.  相似文献   

18.
Cochliobolus heterostrophus Tub1 described here is the first beta-tubulin gene characterized from a naturally occurring benomyl-resistant ascomycete plant pathogen. The gene encodes a protein of 447 amino acids. The coding region of Tub1 is interrupted by three introns, of 116, 55, and 56 nt, situated after codons 4, 12, and 53, respectively. As a result of the preference for pyrimidines in the third position of the codons when a choice exists between purines and pyrimidines, codon usage in the Tub1 gene is biased. Tub1 shows high homology with beta-tubulin genes of other ascomycete species. However, Tub1 is exceptional in having Tyr(167), compared with Phe(167), possessed by beta-tubulin genes of other ascomycetes sequenced thus far. The Tyr(167) residue has been associated with benomyl resistance in other organisms. In contrast, all other benomyl-implicated residues of Tub1 correspond to sensitivity. Based on these results, we suggest that benomyl resistance in the fungus probably is attributed to Tyr(167).  相似文献   

19.
Colletotrichum gloeosporioides f. sp. aeschynomene is a fungal plant pathogen of Aeschynomene virginica. A beta-tubulin-encoding gene (TUB2) from this pathogen was cloned and sequenced. The deduced amino acid sequence of TUB2 had a high degree of homology to other fungal beta-tubulins. A portion of TUB2 from a benomyl-resistant C. gloeosporioides f. sp. aeschynomene mutant was also cloned and sequenced. A point mutation resulting in a glutamic acid-to-lysine substitution at amino acid 198 likely confers benomyl resistance. The mutation is relevant for use as a selectable marker in developing a gene transfer system in C. gloeosporioides f. sp. aeschynomene. Northern (RNA) hybridizations with C. gloeosporioides f. sp. aeschynomene TUB2 and another C. gloeosporioides f. sp. aeschynomene beta-tubulin-encoding gene (TUB1) as probes showed differential expression of these genes in different cell types.  相似文献   

20.
The RT-qPCR has been the method used to analyze gene expression in plants but its benefits have not been completely exploited in the field of plants ecotoxicology when used as molecular biomarkers. The correct use of RT-qPCR demands to establish a certain number of reference genes (RG) which are expected to be invariable in their expression although it does not always happen. The main goals of this work were to: (1) analyze the stability of six potential RG, (2) establish the optimum number of RG, (3) select the most suitable RG to be applied in Bidens laevis under different test conditions and tissues and (4) confirm its convenience by normalizing the expression of one gene of interest under three different challenges. When all data were pooled together, the geNorm algorithm pointed out beta-actin and beta-tubulin (TUB) as the optimal RG pair while NormFinder algorithm selected nicotinamide adenine dinucleotide dehydrogenase (NADHD) and histone 3 (H3) as possessing the most invariable levels of expression. On the other hand, when data were grouped by tissues, ANOVA test selected H3 and TUB, while data grouped by conditions indicated that H3 and NADHD were the most stable RG under this analysis. Therefore, for a general-purpose set of RG, the overall analysis showed that a set of three RG would be optimum, and H3, TUB and NADHD were the selected ones. On the other hand, as RG can vary depending on the tissues or conditions, results achieved with ANOVA would be more reliable. Thus, appropriate normalization process would clearly need more than one RG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号