首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high‐amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model‐averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.  相似文献   

2.
Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the ‘temporal storage effect’ and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature.  相似文献   

3.
Among rhesus macaques (Macaca mulatta)and other cercopithecine monkeys, social groups occupying adjacent home ranges (i.e., members of the same local population) exchange individuals and genes and thus exhibit marked genetic similarities. To assess the degree to which this pattern extends beyond the local population, the genetic structure of M. mulattaand six other primate species was determined using Nei’s (1973) gene-diversity analysis. The genetic similarities seen among social groups in the Dunga Gali population of M. mulatta (Melnick et al.,1984a) can be seen over the entire species range. Comparison of these results with the structures of other similarly organized primate species indicates that (1) the average social group contains most of its local population’s genetic diversity, (2) the average local population contains the majority of the genetic diversity found in the region to which it belongs, and (3) the proportion of species gene diversity found in the average regional population varies substantially between species. Genetic homogeneity within local and regional populations is probably the product of gene flow. The application of a number of analytical models of selection and gene flow strongly suggests that gene flow, genetic drift, and zoogeography offer a more parsimonious and plausible explanation for interspecific variation in regional differentiation than does stabilizing selection.  相似文献   

4.
 种群内个体大小不整齐性是种群数量结构的主要指标。本文研究了不同水分条件下,3个品种春小麦种群个体大小不整齐性的建立及变化规律。对春小麦种群不整齐性的遗传学分析表明:遗传结构与随机环境修饰对种群数量结构形成的相对重要性,因水分条件不同而异。种群不整齐性在自然选择中的作用可用下列简单模型表示:CSo=SH×hSH2 CSo:自然选择强度;SH:大小不整齐性;hSH2:不整齐性的遗传力。  相似文献   

5.
To a first order of approximation, selection is frequency independent in a wide range of family structured models and in populations following an island model of dispersal, provided the number of families or demes is large and the population is haploid or diploid but allelic effects on phenotype are semidominant. This result underlies the way the evolutionary stability of traits is computed in games with continuous strategy sets. In this paper similar results are derived under isolation by distance. The first-order effect on expected change in allele frequency is given in terms of a measure of local genetic diversity, and of measures of genetic structure which are almost independent of allele frequency in the total population when the number of demes is large. Hence, when the number of demes increases the response to selection becomes of constant sign. This result holds because the relevant neutral measures of population structure converge to equilibrium at a rate faster than the rate of allele frequency changes in the total population. In the same conditions and in the absence of demographic fluctuations, the results also provide a simple way to compute the fixation probability of mutants affecting various ecological traits, such as sex ratio, dispersal, life-history, or cooperation, under isolation by distance. This result is illustrated and tested against simulations for mutants affecting the dispersal probability under a stepping-stone model.  相似文献   

6.
To a first order of approximation, selection is frequency independent in a wide range of family structured models and in populations following an island model of dispersal, provided the number of families or demes is large and the population is haploid or diploid but allelic effects on phenotype are semidominant. This result underlies the way the evolutionary stability of traits is computed in games with continuous strategy sets. In this paper similar results are derived under isolation by distance. The first-order effect on expected change in allele frequency is given in terms of a measure of local genetic diversity, and of measures of genetic structure which are almost independent of allele frequency in the total population when the number of demes is large. Hence, when the number of demes increases the response to selection becomes of constant sign. This result holds because the relevant neutral measures of population structure converge to equilibrium at a rate faster than the rate of allele frequency changes in the total population. In the same conditions and in the absence of demographic fluctuations, the results also provide a simple way to compute the fixation probability of mutants affecting various ecological traits, such as sex ratio, dispersal, life-history, or cooperation, under isolation by distance. This result is illustrated and tested against simulations for mutants affecting the dispersal probability under a stepping-stone model.  相似文献   

7.
The article provides the analysis of the maintenance stability of genetic structure of generatively young and middle-aged trees in seed progenies formed during two years in Donbass population of Pinus sylvestris var. cretacea Kalenicz. ex Kom. protected in Ukraine. The analysis has been carried out at 10 allozyme loci. Allele and genotype diversity of the trees is reproduced annually in seed progenies in spite of the low values of outcrossing coefficient (ts = 0,371-0,687; tm = 0,731-0,790) and significant excess of homozygotes in the embryos. Genetic structure fluctuations are observed in embryos and in the pool of paternal gametes in seed progenies of different years.  相似文献   

8.
Fluctuating selection is often thought to be ineffective in maintaining a genetic polymorphism except when generations overlap, for example when a seed bank causes a storage effect. Here, I demonstrate that fluctuating selection on sex‐limited traits automatically includes such a ‘storage effect’ because sex‐limited alleles are shielded from selection in the sex where they are not expressed. With analytical calculations and numerical simulations I show that fluctuating selection can maintain a genetic polymorphism in sex‐limited traits. Such a protected polymorphism can reduce the cost of sex when female‐limited traits are involved. But, this effect will probably be small compared to the two‐fold advantage of asexual reproduction unless many polymorphic loci interact or exceptionally strong environmental fluctuations are present. It is argued that genetic polymorphisms maintained by fluctuating selection on sex‐limited traits may partly explain the large genetic variance of traits under strong sexual selection.  相似文献   

9.
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level.  相似文献   

10.
Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60–100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift.  相似文献   

11.
Given the increasing anthropogenic pressures on forests, the various protected areas—national parks, sanctuaries, and biosphere reserves—serve as the last footholds for conserving biological diversity. However, because protected areas are often targeted for the conservation of selected species, particularly charismatic animals, concerns have been raised about their effectiveness in conserving nontarget taxa and their genetic resources. In this paper, we evaluate whether protected areas can serve as refugia for genetic resources of economically important plants that are threatened due to extraction pressures. We examine the population structure and genetic diversity of an economically important rattan, Calamus thwaitesii, in the core, buffer and peripheral regions of three protected areas in the central Western Ghats, southern India. Our results indicate that in all the three protected areas, the core and buffer regions maintain a better population structure, as well as higher genetic diversity, than the peripheral regions of the protected area. Thus, despite the escalating pressures of extraction, the protected areas are effective in conserving the genetic resources of rattan. These results underscore the importance of protected areas in conservation of nontarget species and emphasize the need to further strengthen the protected-area network to offer refugia for economically important plant species.  相似文献   

12.
The geometry of coexistence   总被引:6,自引:0,他引:6  
Understanding the processes that maintain diversity has been the focus of extensive study, yet there is much that has not been integrated into a cohesive framework. First, there is a separation of perspective. Ecological and evolutionary approaches to diversity have progressed in largely parallel directions. Second, there is a separation of emphasis. In both ecology and population genetics, classical theories favour local explanations with emphasis on population dynamics and selection within populations, while contemporary theories favour spatial explanations, with emphasis on population structure and interactions among populations. What is lacking is a comparative approach that evaluates the relative importance of local and spatial processes in maintaining genetic and ecological diversity. I present a framework for diversity maintenance that emphasizes the comparative approach. I use a well-known but little-used mathematical approach, the perturbation theorem for dynamical systems, to identify key points of contact between ecological and population genetic theories of coexistence. These connections provide for a synthesis of several important concepts: population structure (source-sink versus extinction-colonization), spatial heterogeneity (intrinsic versus extrinsic) in fitness and competitive ability, and temporal scales over which local and spatial processes influence diversity. This framework ties together a large and diverse body of theory and data from ecology and population genetics. It yields comparative predictions that can serve as guidelines in biodiversity management.  相似文献   

13.
1. The highly variable hydrology of dryland rivers has important implications for population dynamics in these systems. In western Queensland, fluctuations in sub‐population size are likely to lead to local bottlenecks and extinctions, increasing the need for connectivity and gene flow to maintain population viability. 2. Using microsatellite markers, we explored evidence for this metapopulation structure in two species of freshwater fish (Maquaria ambigua and Tandanus tandanus) and one crustacean (Macrobrachium australiense) in a sub‐catchment of the upper Murray–Darling Basin, Australia. 3. Overall, we found very weak genetic structure for all three species. Two species (M. ambigua and M. australiense) showed some significant genetic structure that did not correlate with geographic distance. However, decomposed pairwise regression analysis revealed evidence for intense genetic drift at the waterhole scale, suggesting that local bottlenecks are driving what little genetic structure does exist for these species. 4. The results identify the local impact of bottlenecks on genetic diversity, but highlight the importance of gene flow in maintaining population viability in these highly variable systems. As the impacts of bottlenecks are likely to be tempered by gene flow, it is suggested that the maintenance of connectivity is of paramount importance in this dryland system.  相似文献   

14.
15.
Environmental stress imposes strong natural selection on clonal populations, promoting evolutionary change in clonal structure. Environmental stress may also lead to reduction in population size, which together with clonal selection may reduce genotypic diversity of the local populations. We examined how clonal structure in wild-collected samples of two parthenogenetic populations of the freshwater ostracod Eucypris virens responded to hypersalinity and starvation, and the combination of the two stressors. We applied the stress treatments in a factorial design for one generation. When 60% of the individuals per experimental unit had died, post-experimental clonal structure was compared to that of the start of the experiment, which reflected the field conditions. We used five polymorphic allozyme loci as genotype markers. All stress treatments reduced survival compared to the control treatment. In the population “Rivalazzetto”, we observed a reduction of clonal richness in the control treatment, with the initially dominant clone maintaining dominance. This may have resulted from interclonal competition and clone-specific survival under the different laboratory conditions. Clonal richness remained high in the salinity treatment while it was reduced in the combined stress and starvation treatments. In the population “Fornovo”, clonal richness reduced in all treatments including control, while the salinity and combined stress treatment reduced clonal evenness. The clone dominating at the start of the experiment increased in frequency in all treatments, but the change in clonal structure during the experiment was more pronounced in this population. These results suggest that in some conditions an intermediate level of environmental stress may lessen the decline in genetic diversity by strong inter-clonal competition. Moreover, the variation in clonal structure among the stress treatments and distinct genetic backgrounds indicates that more general predictions of stress effects on clonal structure may be difficult.  相似文献   

16.
Population densities of the gray‐sided vole Myodes rufocanus fluctuate greatly within and across years in Japan. Here, to investigate the role of individual dispersal in maintaining population genetic diversity, we examined how genetic diversity varied during fluctuations in density by analyzing eight microsatellite loci in voles sampled three times per year for 5 years, using two fixed trapping grids (approximately 0.5 ha each). At each trapping session, all captured voles at each trapping grid were removed. The STRUCTURE program was used to analyze serially collected samples to examine how population crashes were related to temporal variability, based on local‐scale genetic compositions in each population. In total, 461 and 527 voles were captured at each trapping grid during this study. The number of voles captured during each trapping session (i.e., vole density) varied considerably at both grids. Although patterns in fluctuations were not synchronized between grids, the peak densities were similar. At both grids, the mean allele number recorded at each trapping session was strongly, positively, and nonlinearly correlated with density. STRUCTURE analyses revealed that the proportions of cluster compositions among individuals at each grid differed markedly before and after the crash phase, implying the long‐distance dispersal of voles from remote areas at periods of low density. The present results suggest that, in gray‐sided vole populations, genetic diversity varies with density largely at the local scale; in contrast, genetic variation in a metapopulation is well‐preserved at the regional scale due to the density‐dependent dispersal behaviors of individuals. By influencing the dispersal patterns of individuals, fluctuations in density affect metapopulation structure spatially and temporally, while the levels of genetic diversity are preserved in a metapopulation.  相似文献   

17.
Genetic variability, kin structure and demography of a population are mutually dependent. Population genetic theory predicts that under demographically stable conditions, neutral genetic variability reaches equilibrium between gene flow and drift. However, density fluctuations and non‐random mating, resulting e.g. from kin clustering, may lead to changes in genetic composition over time. Theoretical models also predict that changes in kin structure may affect aggression level and recruitment, leading to density fluctuations. These predictions have been rarely tested in natural populations. The aim of this study was to analyse changes in genetic variability and kin structure in a local population of the root vole (Microtus oeconomus) that underwent a fourfold change in mean density over a 6‐year period. Intensive live‐trapping resulted in sampling 88% of individuals present in the study area, as estimated from mark–recapture data. Based on 642 individual genotypes at 20 microsatellite loci, we compared genetic variability and kin structure of this population between consecutive years. We found that immigration was negatively correlated with density, while the number of kin groups was positively correlated with density. This is consistent with theoretical predictions that changes in kin structure play an important role in population fluctuations. Despite the changes in density and kin structure, there was no genetic differentiation between years. Population‐level genetic diversity measures did not significantly vary in time and remained relatively high (HE range: 0.72–0.78). These results show that a population that undergoes significant demographic and social changes may maintain high genetic variability and stable genetic composition.  相似文献   

18.
Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species’ evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank.  相似文献   

19.

Background  

Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV) genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype × virus genotype (G × G) interactions may promote adaptation of viral lineages to local mosquito vector genotypes. Although spatial structure of vector polymorphism at neutral genetic loci is well-documented, existence of G × G interactions between mosquito and virus genotypes has not been formally demonstrated in natural populations. Here we measure G × G interactions in a system representative of a natural situation in Thailand by challenging three isofemale families from field-derived Aedes aegypti with three contemporaneous low-passage isolates of DENV-1.  相似文献   

20.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号