首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete sequence of a bovine gene encoding an epidermal cytokeratin of mol. wt. 54 500 (No VIb) of the acidic (type I) subfamily is presented, including an extended 5' upstream region. The gene (4377 bp, seven introns) which codes for a representative of the glycine-rich subtype of cytokeratins of this subfamily, is compared with genes coding for: another subtype of type I cytokeratin; a basic (type II) cytokeratin gene; and vimentin, a representative of another intermediate filament (IF) protein class. The positions of the five introns located within the highly homologous alpha-helix-rich rod domain are identical or equivalent, i.e., within the same triplet, in the two cytokeratin I genes. Four of these intron positions are also identical with intron sites in the vimentin gene, and three of these intron positions are identical or similar in the type I and type II cytokeratin subfamilies. On the other hand, the gene organization of both type I cytokeratins differs from that of the type II cytokeratin in the rod region in five intron positions and in the introns located in the carboxy-terminal tail region, with the exception of one position at the rod-tail junction. Remarkably, the two type I cytokeratins also differ from each other in the positions of two introns located at and in the region coding for the hypervariable, carboxy-terminal portion. The introns and the 5' upstream regions of the cytokeratin VIb gene do not display notable sequence homologies with the other IF protein genes, but sequences identical with--or very similar to--certain viral and immunoglobulin enhancers have been identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
EndoA cytokeratin (EndoA) belongs to a family of intermediate filaments (IFs) and is coordinately expressed with EndoB cytokeratin during early mouse embryogenesis. We have isolated and sequenced a cDNA from a library constructed from mRNA of parietal yolk sac-like cells, PYS-2, which are derived from mouse teratocarcinoma. Sequence analysis reveals that EndoA is composed of 490 amino acids, its Mr is 54,362, and it contains a central alpha-helical coiled-coil structure flanked by non-alpha-helical domains. The amino acid sequence of EndoA is highly homologous with human cytokeratin No. 8 (93%) and with bovine cytokeratin No. 8 (91%) not only in the central domain, but also in its tail portion, which is less conserved among other intermediate filaments. A comparison with the other cytokeratin proteins characterizes this polypeptide as a non-epidermal type of cytokeratin of the basic (type-II) subfamily. The C-terminal sequence of EndoA is identical to that of human and bovine cytokeratin No. 8 and also highly conserved in other intermediate filaments (desmin, vimentin, glial fibrillary acidic protein and EndoB). It suggests that these may be involved in interaction with some cell component(s), or in more general roles to form IFs. The N-terminal head region is rich in Ser residues including possible phosphorylation sites.  相似文献   

3.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weight between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [γ-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [γ-32P]ATP and cyclic AMP-dependent protein kinase form calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

4.
Epithelial cells contain a class of intermediate-sized filaments formed by proteins related to epidermal alpha-keratins ('cytokeratins'). Different epithelia can express different combinations of cytokeratin polypeptides widely varying in apparent mol. wt. (40 000-68 000) and isoelectric pH (5.0-8.5). We have separated, by two-dimensional gel electrophoresis, cytokeratin polypeptides from various tissues and cultured cells of man, cow, and rodents and examined their relatedness by tryptic peptide mapping. By this method, a subfamily of closely related cytokeratin polypeptides has been identified which comprises the relatively large (greater than or equal to mol. wt. 52 500 in human cells) and basic (pH greater than or equal to 6.0) polypeptides but not the smaller and acidic cytokeratins. In all species examined, the smallest polypeptide of this subfamily is cytokeratin A, which is widespread in many simple epithelia and is the first cytokeratin expressed during embryogenesis. This cytokeratin polypeptide subfamily is represented by at least one member in all epithelial and carcinoma cells examined, indicating that polypeptides of this subfamily serve an important role as tonofilament constitutents . Diverse stratified epithelia and tumours derived therefrom contain two or more polypeptides of this subfamily, and the patterns of expression in different cell types suggest that some polypeptides of this subfamily are specific for certain routes of epithelial differentiation.  相似文献   

5.
We have distinguished two types of melanocyte within the intermediate layer of the stria vascularis in the cochlea of normally pigmented mice: light and dark intermediate cells. The light intermediate cells are present in the stria from birth and have the typical appearance of a melanocyte. They are large and dendritic with electron-lucent cytoplasm containing numerous vesicles that show tyrosinase activity, and pigment granules in various stages of development. These granules have the ultrastructural and histochemical characteristics of premelanosomes and melanosomes. The light intermediate cells persist throughout life, but less frequently contain pigment in older animals. The dark intermediate cells, present only in adult mice, vary considerably in number and distribution between animals. Pigment granules, bound within an electron-dense acid phosphatase-rich matrix, form the main component of the dark intermediate cells. The intermediate cells may comprise either two distinct cell populations or different developmental stages of the same cell type; ultrastructural observations suggest the latter. In young mice, light intermediate cells contain the electron-dense matrices, which at later stages of development are found almost exclusively in dark cells. The dark intermediate cells contain few cell organelles other than pigment granules accumulated within lysosomal bodies and they often have pycnotic nuclei. These observations suggest that the dark intermediate cells are a degenerate form of the light intermediate cells. Clusters of melanosomes also occur in the basal cells, and to a much lesser extent in the marginal cells. These cells do not stain after incubation in DOPA, suggesting that they are not capable of melanin synthesis, and therefore probably acquire melanin by donation from adjacent melanocytes. Pigment clusters are also found within the spiral ligament at all stages of development.  相似文献   

6.
Turnover of cytokeratin polypeptides in mouse hepatocytes   总被引:6,自引:0,他引:6  
The turnover of cytokeratin polypeptides A (equivalent to No. 8 of the human cytokeratin catalog) and D (equivalent to human cytokeratin No. 18) of mouse hepatocytes was studied by pulse-labeling of mouse liver proteins after intraperitoneal injection of L-[guanido-14C]arginine and [14C]sodium bicarbonate. At various times after injection cytoskeletal proteins were prepared and separated by SDS-polyacrylamide gel electrophoresis, and the specific radioactivities of polypeptides recovered from excised gel slices were determined. With L-[guanido-14C]arginine a rapid increase in the specific radioactivity of both cytokeratins was observed which reached a plateau between 12 and 24 h. With [14C]sodium bicarbonate maximal specific radioactivity was obtained at 6 h followed by a rapid decrease to half maximum values within the subsequent 6 h and then a slower decrease. Half-lives were determined from the decrease of specific radioactivities after pulse-labeling by least-squares plots and found to be 84 h (for cytokeratin component A) and 104 h (component D) for arginine labeling. Values obtained after bicarbonate labeling were similar (95 h for A and 98 h for D). These results show that liver cytokeratins are relatively stable proteins and suggest that components A and D are synthesized and degraded at similar rates, probably in a coordinate way.  相似文献   

7.
The nucleotide sequences of four cDNA clones, each representing the carboxyterminal portion of a bovine epidermal cytokeratin of the "basic" (type II) subfamily, were determined, i.e., components Ia (Mr 68,000), Ib (Mr 68,000), III (Mr 60,000), and IV (Mr 59,000). The comparison of the sequences with each other and with the human type-II cytokeratin of Mr 56,000 reported by Hanukoglu and Fuchs [24] allows the following conclusions: The four major epidermal keratins of the basic (type II) subfamily, which are co-expressed in keratinocytes of the bovine muzzle, exhibit a high homology (greater than 90%) in the alpha-helical portion, but differ considerably in their nonhelical carboxy-terminal regions. The nonhelical carboxyterminal regions of all four cytokeratins are exceptionally rich in glycine and serine. Within the extrahelical tail, three different domains can be distinguished. The consensus sequence TYR(X)LLEGE which demarcates the end of the alpha-helical rod in all intermediate filaments is followed by a relatively short (22-27 amino acids) intercept rich in hydroxy amino acids and valine (carboxyterminal tail domain C1). This is followed by a long region that is variable in size and sequence, rich in glycine di-, tri-, and tetrapeptides, and contains diverse repeated sequences (domain C2). This is followed by another short (20 residues) hydroxy-amino-acid-rich intercept (domain C3) that ends with a conspicuously basic sequence of approximately four to six carboxyterminal amino acids. The first half of domain C1 is also homologous in all four keratins, suggesting that this region also assumes a common conformation and/or serves a special common function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Three homologous acidic peptides have been isolated from the venom of three different Parabuthus scorpion species, P. transvaalicus, P. villosus, and P. granulatus. Analysis of the primary sequences reveals that they structurally belong to subfamily 11 of short chain alpha-K(+)-blocking peptides (Tytgat, J., Chandy, K. G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., van der Walt, J. J., and Possani, L. D. (1999) Trends Pharmacol. Sci. 20, 444-447). These toxins are 36-37 amino acids in length and have six aligned cysteine residues, but they differ substantially from the other alpha-K(+) toxins because of the absence of the critical Lys(27) and their total overall negative charge. Parabutoxin 1 (PBTx1), which has been expressed by recombinant methods, has been submitted to functional characterization. Despite the lack of the Lys(27), this toxin blocks several Kv1-type channels heterologously expressed in Xenopus oocytes but with low affinities (micromolar range). Because a relationship between the biological activity and the acidic residue substitutions may exist, we set out to elucidate the relative impact of the acidic character of the toxin and the lack of the critical Lys(27) on the weak activity of PBTx1 toward Kv1 channels. To achieve this, a specific mutant named rPBTx1 T24F/V26K was made recombinantly and fully characterized on Kv1-type channels heterologously expressed in Xenopus oocytes. Analysis of rPBTx1 T24F/V26K displaying an affinity toward Kv1.2 and Kv1.3 channels in the nanomolar range shows the importance of the functional dyad above the acidic character of this toxin.  相似文献   

10.
Summary The expression of cytokeratin polypeptides in the different epithelia of the developing inner ear of the rat from 12 days post conception to 20 days after birth was analysed immunohistochemically, using a panel of monoclonal antibodies. Throughout the development of the complex epithelial lining of the inner ear originating from the otocyst epithelium, only cytokeratins which are typical of simple epithelia were expressed. Cytokeratins 8, 18, and 19 were detectable shortly after the formation of the otocyst from the ectoderm (12 dpc), whereas cytokeratin 7 expression was delayed and first appeared in the vestibular portion and subsequently in the developing cochlear duct. During the development of the different types of specialized cells, differentiation-dependent modulation of the cytokeratin expression patterns was observed. In the mature inner ear, the specialized cell types displayed a function-related cytokeratin expression profile, both in the cochlear and vestibular portion. Cytokeratin expression in the flat epithelium of the vestibular portion suggests a more complex composition of this epithelium than has been established from routine morphology. Remarkably, the cochlear sensory cells were apparently devoid of cytokeratins, but no final conclusion could be drawn on the presence of cytokeratins in the sensory cells of the vestibular portion, because of the difficulty to delineate the cell borders between sensory cells and supporting cells.  相似文献   

11.
We present the nucleotide and amino acid sequence for a novel human type I hair keratin, which could be identified through its high sequence homology and strict carboxyterminal length identity as a human ortholog of the murine hair keratin mHa3. Our hHa3 sequence differs, however, from that of a previously described hHa3 hair keratin (published only as an amino acid sequence; [13]) in 24 amino acid positions, 8 of which occur in the middle of the carboxyterminal domain. PCR of genomic DNA from 25 normal human subjects using a primer pair derived from sequence segments located in the 3-region of our hHa3 clone that encode conserved amino acid sequences in both keratins, resulted in the amplification of two distinct products of 0.38 kbp and 1.0 kbp. DNA sequence analysis of the cloned PCR products allowed identification of the 0.38 kb sequence as that originating from Yuet al. [13] and the 1.0 kb sequence as that being derived from our data. The difference in fragment length was due to unique intron 6 sequences, indicating that these two keratin species are encoded by genes of their own. Moreover, extensive Southern blot analyses with DNA from 25 unrelated individuals of different races using a 3-noncoding sequence from our keratin and the intron 6 sequence of the keratin of Yuet al. [13], as hybridization probes showed that both keratin genes are present as single copy sequences occurring ubiquitously and without gross alterations in the human genome. Collectively, these data demonstrate that the human type I hair keratin described in this paper represents an isoform of the previously described hHa3 keratin. We propose that these hHa3 isoforms be named in chronological order of discovery hHa3-I and hHa3-II.  相似文献   

12.
Summary Cytokeratin expression was studied in the epitheha lining the normal human urine conducting system using immunohistochemistry on frozen sections employing a panel of 14 monoclonal antibodies. Eleven of these anti-cytokeratin antibodies reacted specifically with one of the 19 human cytokeratin polypeptides. Profound differences were found in the cytokeratin expression patterns between the different types of epithelium in the male and female urinary tract. In the areas showing morphological transitions of transitional epithelium to columnar epithelium and of nonkeratinizing sqamous epithelium to keratinizing squamous epithelium gradual shifts of cytokeratin expression patterns were observed, often anticipating the morphological changes. However, also within one type of epithelium, i.e. the transitional epithelium, two different patterns of cytokeratin expression were found. Expression of cytokeratin 7 was homogeneous in the transitional epithelium of renal pelvis and ureter but heterogeneous in the transitional epithelium of the bladder. Furthermore, intraepithelial differences in cytokeratin expression could be shown to be differentiation related. Using a panel of chain-specific monoclonal antibodies to cytokeratin 8 and 18 conformational and/or biochemical changes in the organization of these intermediate filaments were demonstrated upon differentiation in columnar and transitional epithelium.This study was supported in part by the Netherlands Cancer Foundation  相似文献   

13.
The expression of cytokeratin polypeptides in the different epithelia of the developing inner ear of the rat from 12 days post conception to 20 days after birth was analysed immunohistochemically, using a panel of monoclonal antibodies. Throughout the development of the complex epithelial lining of the inner ear originating from the otocyst epithelium, only cytokeratins which are typical of simple epithelia were expressed. Cytokeratins 8, 18, and 19 were detectable shortly after the formation of the otocyst from the ectoderm (12 dpc), whereas cytokeratin 7 expression was delayed and first appeared in the vestibular portion and subsequently in the developing cochlear duct. During the development of the different types of specialized cells, differentiation-dependent modulation of the cytokeratin expression patterns was observed. In the mature inner ear, the specialized cell types displayed a function-related cytokeratin expression profile, both in the cochlear and vestibular portion. Cytokeratin expression in the flat epithelium of the vestibular portion suggests a more complex composition of this epithelium than has been established from routine morphology. Remarkably, the cochlear sensory cells were apparently devoid of cytokeratins, but no final conclusion could be drawn on the presence of cytokeratins in the sensory cells of the vestibular portion, because of the difficulty to delineate the cell borders between sensory cells and supporting cells.  相似文献   

14.
Cytokeratin expression was studied in the epithelia lining the normal human urine conducting system using immunohistochemistry on frozen sections employing a panel of 14 monoclonal antibodies. Eleven of these anticytokeratin antibodies reacted specifically with one of the 19 human cytokeratin polypeptides. Profound differences were found in the cytokeratin expression patterns between the different types of epithelium in the male and female urinary tract. In the areas showing morphological transitions of transitional epithelium to columnar epithelium and of nonkeratinizing squamous epithelium to keratinizing squamous epithelium gradual shifts of cytokeratin expression patterns were observed, often anticipating the morphological changes. However, also within one type of epithelium, i.e. the transitional epithelium, two different patterns of cytokeratin expression were found. Expression of cytokeratin 7 was homogeneous in the transitional epithelium of renal pelvis and ureter but heterogeneous in the transitional epithelium of the bladder. Furthermore, intraepithelial differences in cytokeratin expression could be shown to be differentiation related. Using a panel of chain-specific monoclonal antibodies to cytokeratins 8 and 18 conformational and/or biochemical changes in the organization of these intermediate filaments were demonstrated upon differentiation in columnar and transitional epithelium.  相似文献   

15.
The presence and distribution of intermediate filament proteins in mouse oocytes and preimplantation embryos was studied. In immunoblotting analysis of electrophoretically separated polypeptides, a distinct doublet of polypeptides with Mr of 54K and 57K, reactive with cytokeratin antibodies, was detected in oocytes and in cleavage-stage embryos. A similar doublet of polypeptides, reactive with cytokeratin antibodies, was also detected in late morula-and blastocyst-stage embryos, and in a mouse embryo epithelial cell line (MMC-E). A third polypeptide with Mr of 50K, present in oocytes only as a minor component, was additionally detected in the blastocyst-stage embryos. No cytokeratin polypeptides could be detected in granulosa cells. Immunoblotting with vimentin antibodies gave negative results in both cleavage-stage and blastocyst-stage embryos. In electron microscopy, scattered filaments, 10-11 nm in diameter, were seen in detergent-extracted cleavage-stage embryos. Abundant 10-nm filaments were present in the blastocyst outgrowth cells. In indirect immunofluorescence microscopy (IIF) of oocytes and cleavage-stage embryos, diffuse cytoplasmic staining was seen with antibodies to cytokeratin polypeptides but not with antibodies to vimentin, glial fibrillary acidic protein, or neurofilament protein. Similarly, the inner cell mass (ICM) cells in blastocyst outgrowths showed diffuse cytokeratin-specific fluorescence. We could not detect any significant fibrillar staining in cleavage-stage cells or ICM cells by the IIF method. The first outgrowing trophectoderm cells already had a strong fibrillar cytokeratin organization. These immunoblotting and -fluorescence results suggest that cytokeratin-like polypeptides are present in mouse oocytes and preimplantation-stage embryos, and the electron microscopy observations show that these early stages also contain detergent-resistant 10- to 11-nm filaments. The relative scarcity of these filaments, as compared to the high intensity in the immunoblotting and immunofluorescence stainings, speaks in favor of a nonfilamentous pool of cytokeratin in oocytes and cleavage-stage embryos.  相似文献   

16.
17.
Keratins are cytoskeletal proteins encoded by a multigene family. We have identified the first human keratin pseudogene and determined its complete nucleotide sequence. Sequence comparisons indicate that the pseudogene arose from a very recent duplication of the 50-kd keratin (K14) gene. The coding and the intron sequences of the two genes are 95% and 93% identical, respectively. Although the sequence of the regulatory region in the pseudogene is virtually identical to that in the 50-kd functional gene, several deleterious mutations have been identified in the pseudogene. There are three frameshifts in the coding regions, one of which is a perfect 8-bp duplication. A single-base-pair deletion in the first exon and a single-base-pair insertion in the penultimate exon also result in frameshifts. The three remaining deleterious mutations interfere with the mRNA processing signals: two alter the intron/exon boundaries, and the third disrupts the polyadenylation signal. These mutations clearly identify the sequence as a human keratin pseudogene.  相似文献   

18.
Three monoclonal antibodies (AE1, AE2, and AE3) were prepared against human epidermal keratins and used to study keratin expression during normal epidermal differentiation. Immunofluorescence staining data suggested that the antibodies were specific for keratin-type intermediate filaments. The reactivity of these antibodies to individual human epidermal keratin polypeptides (65-67, 58, 56, and 50 kdaltons) was determined by the immunoblot technique. AE1 reacted with 56 and 50 kdalton keratins, AE2 with 65-67 and 56-kdalton keratins, and AE3 with 65-67 and 58 kdalton keratins. Thus all major epidermal keratins were recognized by at least one of the monoclonal antibodies. Moreover, common antigenic determinants were present in subsets of epidermal keratins. To correlate the expression of specific keratins with different stages of in vivo epidermal differentiation, the antibodies were used for immunohistochemical staining of frozen skin sections. AE1 reacted with epidermal basal cells, AE2 with cells above the basal layer, and AE3 with the entire epidermis. The observation that AE1 and AE2 antibodies (which recognized a common 56 kdalton keratin) stained mutually exclusive parts of the epidermis suggested that certain keratin antigens must be masked in situ. This was shown to be the case by direct analysis of keratins extracted from serial, horizontal skin sections using the immunoblot technique. The results from these immunohistochemical and biochemical approaches suggested that: (a) the 65- to 67-kdalton keratins were present only in cells above the basal layer, (b) the 58-kdalton keratin was detected throughout the entire epidermis including the basal layer, (c) the 56- kdalton keratin was absent in the basal layer and first appeared probably in the upper spinous layer, and (d) the 50-kdalton keratin was the only other major keratin detected in the basal layer and was normally eliminated during s. corneum formation. The 56 and 65-67- kdalton keratins, which are characteristic of epidermal cells undergoing terminal differentiation, may be regarded as molecular markers for keratinization.  相似文献   

19.
20.
Covalently cross-linked multimers of cytokeratins were shown to be present in transplantable Morris hepatoma 7777 cells. These high molecular weight antigens were not detectable in normal rat liver cells. However, identical high molecular weight antigens were also demonstrated in rat liver cells when the cells were homogenized in solutions containing Ca2+. The cross-linking reaction was suggested to be mediated by the action of tissue transglutaminases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号