首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of porcine brain tubulin in planar sheets formed in the presence of zinc has been determined to a resolution of approximately 20 Å by electron microscopy and image reconstruction on negatively stained samples. The samples were prepared with a mica floatation technique, which yields tubulin sheets with 36 reciprocal space maxima on lattice lines at 21, 28, 42 and 84 Å?1 in Fourier transforms of digitized images. In order to obtain three-dimensional data, sheets were tilted with the goniometer stage of the electron microscope to provide images at various angles between 0 ° and ± 60 °. Transforms of 33 tilted images plus the transform of untilted sheets based on an average of nine untilted images were combined to give the third dimension of reciprocal space (z1). These data, were expressed in terms of the phases and amplitudes along the z1 lattice line for each of the 36 maxima observed in untilted samples, as well as five additional lattice lines which have zero-amplitudes in the non-tilted central section of the three-dimensional transform. Home of these zero-amplitudes arise from systematic absences which are due to a 2-fold screw axis relating adjacent protofilaments of tubulin in the zinc-induced sheets. Thus in the three-dimensional reconstructions of the sheets a polarity of the protofilaments is apparent, with adjacent protofilaments aligned in opposite directions to give an antiparallel pattern, in contrast to normal microtubules composed of protofilaments in parallel alignment. Two classes of morphological units, each with a mass corresponding to a molecular weight of about 55,000, are found to alternate along the protofilaments. These distinct morphological units are identified as the α and β subunits of tubulin, confirming the representation of tubulin as an αβ heterodimer. Furthermore, the extensive internal contact between subunits within a dimer can readily be distinguished from the less extensive contact between dimer units. Such differences in contacts were not apparent in the earlier two-dimensional reconstructions. In addition, areas of excluded stain joining one class of subunits to the subunits of the other class in adjacent protofilaments have been resolved for tubulin polymerized in zinc-induced sheets. Of the two classes of subunits one is distinguished by a prominent cleft. Identification of which class of subunits is α and which is β is not yet possible.  相似文献   

2.
A three-dimensional image of zinc-induced brain tubulin sheets has been reconstructed by computer from digitized electron microscope images of negatively stained specimens. Different views of the sheets were obtained by tilting the specimens in the microscope and also by sectioning normal to the plane of the sheets. The overall resolution of the data is about 2 nm. The features of the resulting three-dimensional model suggest an explanation for the somewhat variable appearance of tubulin subunits in electron microscope images of negatively stained intact and opened-out microtubules.  相似文献   

3.
Structure of the tubulin dimer in zinc-induced sheets   总被引:8,自引:0,他引:8  
The structure of tubulin has been studied in projection by minimum beam electron microscopy and image processing of negatively stained zinc-induced sheets. The reconstructed images include data to 15 Å resolution.We report here a clear and reproducible 82 Å repeat arising from the arrangement of heterodimers in sheet aggregates of tubulin. This repeat is only observed in diffraction patterns from images recorded by minimum beam methods (10 to 20 e/Å2) and arises from small, but consistent, structural differences between two similar subunits believed to represent the two chemical species of tubulin monomer (Mr, 55,000). At higher electron doses (100 to 200 e/Å2), the additional information is lost or very much reduced, and only a repeat of 41 Å is observed, owing to the loss of distinction between monomers in the tubulin heterodimer.The sheets are composed of 49 Å wide, polar protofilaments, similar to those observed in microtubules; however, the interprotofilament packing is completely different in the two structures. In these sheets, adjacent protofilaments point and face in opposite directions; i.e. they are related by dyad-screw axes normal to the protofilament axes and in the plane of the sheet. Thus, the zinc-induced sheets are crystals of space group P21, with cell dimensions of about 97 Å × 82 Å, containing one tubulin heterodimer per asymmetric unit.Reconstructed images of four individual sheets, and their average, show the arrangement and shapes of the two heterodimers contained in each unit cell. The structure and packing of heterodimers in sheets are compared to those in opened out microtubules where all protofilaments point and face in the same direction.  相似文献   

4.
Tubulin polymerizes into two-dimensional, crystalline sheets in the presence of zinc ions. These sheets are well suited to structural studies by electron crystallography. We have developed conditions for forming sheets which are large and well ordered enough to provide both electron diffraction and image data to better than 4 A resolution. In projection maps calculated from this data, the alpha and beta monomers can be identified within the protofilaments. These results indicate that we should be able to determine the structure of tubulin in these sheets at atomic resolution.  相似文献   

5.
Zinc-induced tubulin sheets without microtubule-associated proteins (MAPs) were assembled from tubulin purified by phosphocellulose chromatography. Large, open sheets were obtained in five-minute incubations at pH 5.7. Electron micrographs of negatively stained sheets showed a protofilament arrangement similar to that observed for zinc-induced sheets with MAPs but with altered lattice parameters. The spacings measured from optical diffraction patterns demonstrated that the protofilaments were 2.2 A closer together in the sheets without MAPs. Each MAP-free sheet was also divided roughly in half by a discontinuity which was parallel to the protofilaments and the relationship between the two domains was deduced from computed transforms. Two-dimensional image processing was carried out by conventional Fourier techniques and by correlation analysis. The correlation analysis improved the reconstructions in this application, with the resolution limited by the inherent properties of the negative stain method to about 14 A. A prominent feature of the computed reconstructions was an alternation of light and dark protofilaments due to differential staining, as revealed by a study of folded sheets. Neighboring protofilaments are related by a 2-fold screw axis, as they are in zinc-induced sheets with MAPs, but the symmetry is masked by the differential staining. The major effect of MAP removal on the structure of the sheets is that the bilobed structure of alternate tubulin subunits is no longer observed. This observation and the closer spacing of protofilaments is consistent with the postulate that some of the MAP molecules lie in the groove between protofilaments and bind to several tubulin dimers.  相似文献   

6.
1. Significant levels of total phospholipid phosphate were detected in highly purified microtubule protein preparations. 2. While the phospholipid profiles of total microtubule proteins and microtubule-associated proteins showed both similarities and differences to that of a whole brain homogenate, purified tubulin was associated only with phospholipids that were not detectable in the latter. 3. Phosphatidyl ethanolamine, found exclusively in a fraction of microtubule associated proteins, stimulated microtubule assembly in vitro.  相似文献   

7.
Crude preparations of microtubule-associated proteins (MAPs), as well as purified MAP 2, influence the structure of products assembled from purified tubulin at low pH values. At pH 6.2, only 12% of the assembled products were microtubules (MTs) when assembly was conducted in 10% DMSO; 88% were large sheets of protofilaments. In the absence of DMSO, 28% of the structures were MTs. As the content of MAPs in the assembly reaction was increased, the proportion of MTs increased to 87% at a MAP/tubulin (ww) ratio of 0.67 in the presence of DMSO and to 98% at a MAP/tubulin (ww) ratio of 0.33 in the absence of DMSO. Purified MAP 2 was as effective as crude MAP preparations in promoting MT formation at pH 6.2. MTs formed from purified tubulin and MAP 2 were transformed into spirals of protofilaments upon the addition of Vinblastine (VLB). Spirals were also formed when VLB was added to a mixture of tubulin and MAP 2 at 4 ° C. It thus appears that MAP 2 is a causative factor in initiating spiral formation in the presence of VLB.  相似文献   

8.
Root contraction in hyacinth (Hyacinthus orientalis L.) is marked by reoriented cell growth in the cortex of the contractile region. Cellular volume of the inner cortex enlarges fourfold during root contraction. This is associated with large increases in the radial and tangential dimensions and decreases in the longitudinal dimension of the cells. In order to determine the possible role of microtubules (MTs) in these changes we compared tubulin levels and MT numbers and orientation in contracted and non-contracted regions of hyacinth roots. Tubulin content was analysed by a radioimmunoassay; MT numbers and orientation were analyzed by counting profiles in sectioned material using transmission electron microscopy. Contracted tissue was found to have significantly higher levels of tubulin on a per-cell basis than non-contracted tissue, and also increased tubulin levels relative to total protein. The spatial MT frequencies were the same in contracted and non-contracted tissues, indicating a proportional increase in MT numbers in the expanded cells. Although the absolute spatial frequency of MTs was constant, the orientation, as determined by morphometric analysis of MT profiles, was not. While in the longitudinal section plane 42% of the MTs in the non-contracted cells were oblique, in the contracted cells the percentage of MTs presenting oblique profiles increased to 87%. Additionally, a qualitative difference in MTs was observed in contracted cells; electron-opaque material was seen peripherally associated with the MTs of the inner cortex. The changes in tubulin levels and in MT numbers as well as the qualitative differences in the MTs of contracted and non-contracted root regions indicate that, in hyacinth, reoriented cellular enlargement associated with root contraction cannot be explained simply by shifts in the arrangement of preexisting cortical MT arrays, but involves more complex changes in the cytoskeleton.Abbreviations MT(s) microtubule(s) - TEM transmission electron microscopy - RIA radioimmunoassay - Mr apparent molecular mass I=Jernstedt (1984b)  相似文献   

9.
10.
Some basic proteins enable microtubule protein to form special assembly products in vitro, known as double-walled microtubules. Using histones (H1, core histones) as well as the human encephalitogenic protein to induce the formation of double-walled microtubules, we made the following electron microscopic observations: (1) Double-walled microtubules consist of an "inner" microtubule which is covered by electron-dense material, apparently formed from the basic protein, and by a second tubulin wall. (2) The tubulin of the second wall seems to be arranged as protofilaments, surrounding the inner microtubule in a helical or ring-like manner. (3) The surface of double-walled microtubules lacks the projections of microtubule-associated proteins, usually found on microtubules. (4) In the case of protofilament ribbons (incomplete microtubules), H1 binds exclusively to their convex sides that correspond to the surface of microtubules. Zn2+-induced tubulin sheets, consisting in contrast to microtubules of alternately arranged protofilaments, are covered by H1 on both surfaces. Furthermore, multilayered sheet aggregates appeared. The results indicate that the basic proteins used interact only with that protofilament side which represents the microtubule surface. In accordance with this general principle, models on the structure of double-walled microtubules and multilayered tubulin sheets were derived.  相似文献   

11.
Hydrolysis of GTP is known to accompany microtubule assembly. Here we show that hydrolysis of GTP is also associated with the formation of linear oligomers of tubulin, which are precursors (prenuclei) in microtubule assembly. The hydrolysis of GTP on these linear oligomers inhibits the lateral association of GTP-tubulin that leads to the formation of a bidimensional lattice. Therefore GTP hydrolysis interferes with the nucleation of microtubules. Linear oligomers are also formed in mixtures of GTP-tubulin and GDP-tubulin. The hydrolysis of GTP associated with heterologous interactions between GTP-tubulin and GDP-tubulin in the cooligomer takes place at a threefold faster rate than upon homologous interactions between GTP-tubulins. The implication of these results in a model of vectorial GTP hydrolysis in microtubule assembly is discussed.  相似文献   

12.
We have studied the interaction of Na2SeO3 with microtubule proteins and tubulin. This selenium compound inhibits the polymerization of MTP (half-inhibition occurred for Na2SeO3 10 microM), and to a lesser that of tubulin. This effect of selenite is related to the formation of disulfide bridges between tubulin sulfhydryl groups, inducing a conformational change of the protein. This is corroborated by the modified binding of colchicine and vinblastine in presence of selenium. The selenite inhibitory concentrations are similar to the toxic blood levels of selenium (40 microM).  相似文献   

13.
The Ca2+-dependent regulator protein (CDR) of cyclic nucleotide phosphodiesterase (PDE) was reported to be a Ca2+-dependent regulator of microtubule (MT) assembly in the preceding paper. In this paper, the binding of Ca2+-CDR complex to tubulin dimer was investigated in order to elucidate the Ca2+-dependent inhibitory action of CDR on MT assembly. Purified microtubular proteins (PMPs) isolated from porcine brain did not affect the ability of CDR to activate Ca2+-activatable PDE, and did not include any inhibitory protein of Ca2+-activatable PDE. The binding of CDR to the tubulin dimer was observed on Sephadex G-200 gel filtration and ammonium sulfate fractionation in a Ca2+-dependent manner. CDR did not bind to microtubule associated proteins. We now assume that Ca2+-dependent inhibition of MT assembly by CDR is due to the binding of CDR to tubulin dimer in a Ca2+-dependent manner.  相似文献   

14.
T Fujii  R Tanaka 《Life sciences》1979,24(18):1683-1690
The interaction between actomyosin from rabbit skeletal muscle and microtubule proteins or 6S tubulin from rat brain was investigated with respect to the change in ATPase activity and physicochemical properties. Myosin bound to both microtubule proteins and 6S tubulin at low ionic strength. In the aggregates the molar ratio of microtubule proteins or 6S tubulin to myosin was 0.5–1.5 or 1.5–2.5. The superprecipitation of actomyosin was inhibited by 6S tubulin. The degree of superprecipitation inhibition was dependent on the mixing order of myosin, actin, 6S tubulin, and ATP. When myosin was preincubated first with 6S tubulin, the inhibition was most marked. The actin activation of myosin Mg-ATPase was inhibited by both microtubule proteins and 6S tubulin with stronger effects by the latter. The preincubation of myosin with 6S tubulin prior to the addition of actin induced not only greater inhibition of ATPase but also the binding of a larger quantity of 6S tubulin to myosin than the preincubation of myosin with actin. The similar results were obtained with microtubule proteins.  相似文献   

15.
Microtubule organization in the cytoplasm is in part a function of the number and length of the assembled polymers. The intracellular concentration of tubulin could specify those parameters. Saccharomyces cerevisiae strains constructed with moderately decreased or increased copy numbers of tubulin genes provide an opportunity to study the cellular response to a steady-state change in tubulin concentration. We found no evidence of a mechanism for adjusting tubulin concentrations upward from a deficit, nor did we find a need for such a mechanism: cells with no more than 50% of the wild-type tubulin level were normal with respect to a series of microtubule-dependent properties. Strains with increased copies of both alpha- and beta-tubulin genes, or of alpha-tubulin genes alone, apparently did down regulate their tubulin levels. As a result, they contained greater than normal concentrations of tubulin but much less than predicted from the increase in gene number. Some of this down regulation occurred at the level of protein. These strains were also phenotypically normal. Cells could contain excess alpha-tubulin protein without detectable consequences, but perturbations resulting in excess beta-tubulin genes may have affected microtubule-dependent functions. All of the observed regulation of levels of tubulin can be explained as a response to toxicity associated with excess tubulin proteins, especially if beta-tubulin is much more toxic than alpha-tubulin.  相似文献   

16.
Three-dimensional reconstruction of a binucleate intermediate precyst of Pneumocystis carinii was performed from serial-thin sections using the CATIA (Conception Assistée Tridimensionnelle Inter Active) Dassault system program. The presence of a mitochondrion, complex well-developed endoplasmic structures, and numerous Golgi vesicles was established. A better understanding of the ultrastructure of rabbit-derived P. carinii stages made it possible to formulate hypotheses on the evolution and physiology of the endomembrane system. Thus, the presence of the well-developed endoplasmic saccular structure and more than 230 Golgi vesicles in its vicinity might be implicated in the differentiation of the parasite surface structures and might also be related to nuclear division and individualization of intracystic bodies.  相似文献   

17.
18.
We reported previously that calmodulin binds to tubulin in a Ca2+-dependent manner, thereby inhibiting microtubule assembly. In this work, we quantitatively investigated the binding between calmodulin and tubulin by applying two analytical methods. One was the frontal analysis using affinity chromatography originally developed by Kasai and Ishii (J. Biochem. 84, 1061-1069, 1978). The use of tubulin-Sepharose columns gave a dissociation constant of 4.0 microM. The other was the equilibrium gel filtration developed by Hummel and Dreyer (Biochim. Biophys. Acta 63, 532-534, 1962). This method using a Sephadex G-100 column provided a dissociation constant of 3.5 microM under the same medium conditions as in the frontal analysis, and it was found that 2 mol calmodulin could bind to 1 mol tubulin. Furthermore, the frontal analysis method was convenient for studies on the effect of temperature and ionic strength on the binding. Upon elevating the temperature, the dissociation constant increased. Increase in the ionic strength also increased the dissociation constant.  相似文献   

19.
Two tubulin variants, isolated from chicken brain and erythrocytes and known to have different peptide maps and electrophoretic properties, are demonstrated to exhibit different assembly properties in vitro: 1) erythrocyte tubulin assembles with greater efficiency (lower critical concentration, greater elongation rate) but exhibits a lower nucleation rate than brain tubulin, and 2) erythrocyte tubulin readily forms oligomers whose presence significantly retards the rate of elongation, suggesting that tubulin oligomers may also be important for determining the rate of assembly and the length of microtubules in erythrocytes. Erythrocyte tubulin isolated by cycles of in vitro assembly-disassembly is also demonstrated to contain a 67-kDa tau factor that greatly enhances microtubule nucleation but has little effect on elongation rates or critical concentration. Immunofluorescence microscopy with tau antibody indicates that tau is specifically associated with marginal band microtubules, suggesting that it may be important for determining microtubule function in vivo.  相似文献   

20.
The interaction of tubulin-microtubule poison complexes with anti-tubulin antisera has been investigated using radioimmunoassay. The binding of the major antiserum used in this study to tubulin does not interfere with the binding of colchicine to the tubulin or affect the decay of the colchicine-binding activity of the tubulin. Conversely, if colchicine is incubated with the tubulin, forming tubulin-colchicine complexes, the tubulin-colchicine complexes are less efficient competitors for antibody-binding sites than tubulin alone. This is the result of the formation of specific colchicine-tubulin complexes, since tubulin, incubated with lumicolchicine or isocolchicine, behaves as if the tubulin were incubated alone in the radioimmunoassay. When tubulin is incubated with other microtubule poisons, podophyllotoxin or vinblastine, the tubulin-drug complexes have diminished ability to compete with tubulin as did the tubulin-colchicine complexes. These changes observed in the binding of tubulin-microtubule poison complexes to anti-tubulin antisera in a tubulin radioimmunoassay suggest that the binding of colchicine, podophyllotoxin, or vinblastine to tubulin induces subtle conformational changes on the surface of the tubulin dimer involving antigenic determinant sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号