首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thickness of monoglyceride planar bilayers has significant effects on the transfer of protons in both native gramicidin A (gA) and in covalently linked SS- and RR-dioxolane-linked gA proteins. Planar bilayers with various thicknesses were formed from an appropriate combination of monoglyceride with various fatty acid lengths and solvent. Bilayer thicknesses ranged from 25 A (monoolein in squalene) to 54 A (monoeicosenoin in decane). Single-channel conductances to protons (g(H)) were measured in the concentration range of 10-5000 mM HCl. In native gA as well as in RR channels, the shape of the log(g(H))-log([H(+)]) relationships was nonlinear and remained basically unaltered in monoglyceride bilayers with various thicknesses. For both native gA and RR channels, g(H) values were systematically and significantly larger in thin than in thick bilayers. By contrast, the shape of the log(g(H))-log([H(+)]) relationships in the SS channel was linear (with a slope considerably smaller than 1) in thick (>37 A) bilayers. However, in thin (<37 A) bilayers these plots became nonlinear and g(H) values approached those obtained in native gA channels. The linearization of the log-log plots in the SS channel in thick bilayers is a consequence of a dramatic increase (instead of a decrease as in native gA and RR channels) of g(H) in these bilayers in [H(+)] <1 M. The gating characteristics of the various gA channels as a function of bilayer thickness followed the same pattern as described previously. It was noticed, however, that in the thickest monoglyceride bilayer used in this study, both the SS- and RR-dioxolane-linked channels opened in a mode of bursting activity instead of remaining in the open state as in thin bilayers. It is proposed that the thickness of monoglyceride bilayers modulates proton transfer in native gA channels by a combination of factors including the access resistances of channels to H(+), and fluctuations in both the structure of the lipid bilayer and in the distance between gA monomers. The differential effects of relatively thick monoglyceride bilayers on proton transfer in both dioxolane-linked gA channels must relate to distinct interactions between the bilayers and the SS and RR dioxolanes.  相似文献   

2.
The direct role of the dioxolane group on the gating and single-channel conductance of different stereoisomers of the dioxolane-linked gramicidin A (gA) channels reconstituted in planar lipid bilayers was investigated. Four different covalently linked gA dimers were synthesized. In two of them, the linker was the conventional dioxolane described previously (SS and RR channels). Two gAs were covalently linked with a novel modified dioxolane group containing a retinal attachment (ret-SS and ret-RR gA dimers). These proteins also formed ion channels in lipid bilayers and were selective for monovalent cations. The presence of the bulky and hydrophobic retinal group immobilizes the dioxolane linker in the bilayer core preventing its rotation into the hydrophilic lumen of the pore. In 1 M HCl the gating kinetics of the SS or RR dimers were indistinguishable from their retinal counterparts; the dwell-time distributions of the open and closed states in the SS and ret-SS were basically the same. In particular, the inactivation of the RR was not prevented by the presence of the retinal group. It is concluded that neither the fast closing events in the SS or RR dimers nor the inactivation of the RR are likely to be a functional consequence of the flipping of the dioxolane inside the pore of the channel. On the other hand, the inactivation of the RR dimer was entirely eliminated when alkaline metals (Cs(+) or K(+)) were the permeating cations in the channel. In fact, the open state of the RR channel became extremely stable, and the gating characteristics of both the SS and RR channels were different from what was seen before with permeating protons. As in HCl, the presence of a retinal in the dioxolane linker did not affect the gating behavior of the SS and RR in Cs(+)- or K(+)-containing solutions. Alternative hypotheses concerning the gating of linked gA dimers are discussed.  相似文献   

3.
4.
Two different stereoisomers of the dioxolane-linked gramicidin A (gA) channels were individually synthesized (the SS and RR dimers;. Science. 244:813-817). The structural differences between these dimers arise from different chiralities within the dioxolane linker. The SS dimer mimics the helicity and the inter- and intramolecular hydrogen bonding of the monomer-monomer association of gA's. In contrast, there is a significant disruption of the helicity and hydrogen bonding pattern of the ion channel in the RR dimer. Single ion channels formed by the SS and RR dimers in planar lipid bilayers have different proton transport properties. The lipid environment in which the different dimers are reconstituted also has significant effects on single-channel proton conductance (g(H)). g(H) in the SS dimer is about 2-4 times as large as in the RR. In phospholipid bilayers with 1 M [H(+)](bulk), the current-voltage (I-V) relationship of the SS dimer is sublinear. Under identical experimental conditions, the I-V plot of the RR dimer is supralinear (S-shaped). In glycerylmonooleate bilayers with 1 M [H(+)](bulk), both the SS and RR dimers have a supralinear I-V plot. Consistent with results previously published (. Biophys. J. 73:2489-2502), the SS dimer is stable in lipid bilayers and has fast closures. In contrast, the open state of the RR channel has closed states that can last a few seconds, and the channel eventually inactivates into a closed state in either phospholipid or glycerylmonooleate bilayers. It is concluded that the water dynamics inside the pore as related to proton wire transfer is significantly different in the RR and SS dimers. Different physical mechanisms that could account for this hypothesis are discussed. The gating of the synthetic gA dimers seems to depend on the conformation of the dioxolane link between gA's. The experimental results provide an important framework for a detailed investigation at the atomic level of proton conduction in different and relatively simple ion channel structures.  相似文献   

5.
Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.  相似文献   

6.
Proton conductance (g(H)) in single SS stereoisomers of dioxolane-linked gramicidin A (gA) channels were measured in different phospholipid bilayers at different HCl concentrations. In particular, measurements were obtained in bilayers made of 1,2-diphytanoyl 3-phosphocholine (DiPhPC) or its ethylated derivative 1,2-diphytanoyl 3-ethyl-phosphocholine (et-DiPhPC,). The difference between these phospholipids is that in et-DiPhPC one of the phosphate oxygens is covalently linked to an ethyl group and cannot be protonated. In relatively dilute acid solutions, g(H) in DiPhPC is significantly higher than in et-DiPhPC. At high acid concentrations, g(H) is the same in both diphytanoyl bilayers. Such differences in g(H) can be accounted for by surface charge effects at the membrane/solution interfaces. In the linear portion of the log g(H)-log [H] relationship, g(H) values in diphytanoyl bilayers were significantly larger (approximately 10-fold) than in neutral glyceryl monooleate (GMO) membranes. The slopes of the linear log-log relationships between g(H) and [H] in diphytanoyl and GMO bilayers are essentially the same (approximately 0.76). This slope is significantly lower than the slope of the log-log plot of proton conductivity versus proton concentration in aqueous solutions (approximately 1.00). Because the chemical composition of the membrane-channel/solution interface is strikingly different in GMO and diphytanoyl bilayers, the reduced slope in g(H)-[HCl] relationships may be a characteristic of proton transfer in the water wire inside the SS channel. Values of g(H) in diphytanoyl bilayers were also significantly larger than in membranes made of the more common biological phospholipids 1-palmitoyl 2-oleoyl phosphocholine (POPC) or 1-palmitoyl 2-oleoyl phosphoethanolamine (POPE). These differences, however, cannot be accounted for by different surface charge effects or by different internal dipole potentials. On the other hand, maximum g(H) measured in the SS channel does not depend on the composition of the bilayer and is determined essentially by the reduced mobility of protons in concentrated acid solutions. Finally, no experimental evidence was found in support of a lateral proton movement at the phospholipid/solution interface contributing to g(H) in single SS channels. Protein-lipid interactions are likely to modulate g(H) in the SS channel.  相似文献   

7.
The transfer of protons in water wires was studied in native gramicidin A (gA), and in the SS- and RR-diastereoisomers of dioxolane-linked gA channels (SS and RR channels). These peptides were incorporated into membranes comprised of distinct combinations of phospholipid headgroups and acyl chains. Quantitative relationships between single channel conductances to H+ (g(H)) and [H+] were determined in distinct phospholipid membranes, and are in remarkable contrast with results previously obtained in monoglyceride membranes. In particular: 1), g(H)-[H+] relationships for the various gA channels in distinct phospholipid membranes are well fitted by single adsorption isotherms. A simple kinetic model assuming mono-occupancy of channels by protons fits said relationships. This does not occur with monoglyceride membranes. 2), Under nonsaturating [H+], g(H) is approximately 1 order of magnitude larger in phospholipid than in monoglyceride membranes. 3), Differences between rates of H+ transfer in various gA channels are still present but considerably attenuated in phospholipid relative to monoglyceride membranes. 4), Charged phospholipid headgroups affect g(H) via changes in [H+] at the membrane/solution interfaces. 5), Phosphoethanolamine groups caused a marked attenuation of g(H) relative to membranes with other phospholipid headgroups. This attenuation is voltage-dependent and tends to saturate H+ currents at voltages larger than 250 mV. This effect is likely to occur by limiting the access and exit of H+ in and out of the channel due to relatively strong oriented H-bonds between waters and phosphoethanolamine groups at channel interfaces. The differential effects of phospholipids on proton transfer could be reasoned by considering solvation effects of side chain residues of gramicidin channels by double acyl chains and by the presence of polar headgroups facilitating the entrance/exit of protons through the channel mouths.  相似文献   

8.
Gramicidin A (gA), with four Trp residues per monomer, has an increased conductance compared to its Phe replacement analogs. When the dipole moment of the Trp13 side chain is increased by fluorination at indole position 5 (FgA), the conductance is expected to increase further. gA and FgA conductances to Na+, K+, and H+ were measured in planar diphytanoylphosphatidylcholine (DPhPC) or glycerylmonoolein (GMO) bilayers. In DPhPC bilayers, Na+ and K+ conductances increased upon fluorination, whereas in GMO they decreased. The low ratio in the monoglyceride bilayer was not reversed in GMO-ether bilayers, solvent-inflated or -deflated bilayers, or variable fatty acid chain monoglyceride bilayers. In both GMO and DPhPC bilayers, fluorination decreased conductance to H+ but increased conductance in the mixed solution, 1 M KCl at pH 2.0, where K+ dominates conduction. Eadie-Hofstee plot slopes suggest similar destabilization of K+ binding in both lipids. Channel lifetimes were not affected by fluorination in either lipid. These observations indicate that fluorination does not change the rotameric conformation of the side chain. The expected difference in the rate-limiting step for transport through channels in the two bilayers qualitatively explains all of the above trends.  相似文献   

9.
In order to understand how aromatic residues modulate the function of membrane-spanning proteins, we examined the role of the four tryptophans in gramicidin A (gA) in determining the average duration and permeability characteristics of membrane-spanning gramicidin channels; the tryptophan residues were replaced by tyrosine (gramicidin T, gT), tyrosine O-benzyl ether [gramicidin T(Bzl), gT(Bzl)], naphthylalanine (gramicidin N, gN), and phenylalanine (gramicidin M enantiomer, gM-). These analogues form channels with durations and conductances that differ some 10- and 16-fold, respectively. The single-channel conductance was invariably decreased by the Trp----Yyy replacement, and the relative conductance alterations were similar in phosphatidylcholine (DPhPC) and monoglyceride (GMO) bilayers. The duration variations exhibited a more complex pattern, which was quite different in the two membrane environments: in DPhPC bilayers, gN channels have an average duration that is approximately 2-fold longer than that of gA channels; in GMO bilayers, the average duration of gN channels is about one-tenth that of gA channels. The sequence-dependent alterations in channel function do not result from alterations in the channels' peptide backbone structure, because heterodimers can form between the different analogues and gramicidine A, and there is no energetic cost associated with heterodimer formation [cf. Durkin, J. T., Koeppe, R. E., II, & Andersen, O. S. (1990) J. Mol. Biol. 211, 221]. The alterations in permeability properties are consistent with the notion that Trp residues alter the energy profile for ion permeation through long-range electrostatic interactions.  相似文献   

10.
In organic solvents gramicidin A (gA) occurs as a mixture of slowly interconverting double-stranded dimers. Membrane-spanning gA channels, in contrast, are almost exclusively single-stranded beta(6,3)-helical dimers. Based on spectroscopic evidence, it has previously been concluded that the conformational preference of gA in phospholipid bilayers varies as a function of the degree of unsaturation of the acyl chains. Double-stranded pi pi(5,6)-helical dimers predominate (over single-stranded beta(6,3)-helical dimers) in lipid bilayer membranes with polyunsaturated acyl chains. We therefore examined the characteristics of channels formed by gA in 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane, 1,2-dioleoylphosphatidylcholine/n-decane, and 1,2-dilinoleoylphosphatidylcholine/n-decane bilayers. We did not observe long-lived channels that could be conducting double-stranded pi pi(5,6)-helical dimers in any of these different membrane environments. We conclude that the single-stranded beta(6,3)-helical dimer is the only conducting species in these bilayers. Somewhat surprisingly, the average channel duration and channel-forming potency of gA are increased in dilinoleoylphosphatidylcholine/n-decane bilayers compared to 1-palmitoyl-2-oleoylphosphatidylcholine/n-decane and dioleoylphosphatidylcholine/n-decane bilayers. To test for specific interactions between the aromatic side chains of gA and the acyl chains of the bilayer, we examined the properties of channels formed by gramicidin analogues in which the four tryptophan residues were replaced with naphthylalanine (gN), tyrosine (gT), and phenylalanine (gM). The results show that all of these analogue channels experience the same relative stabilization when going from dioleoylphosphatidylcholine to dilinoleoylphosphatidylcholine bilayers.  相似文献   

11.
Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4–5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations—except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch model, which has implications for understanding the energetics of membrane protein-lipid interactions.  相似文献   

12.
Green tea's health benefits have been attributed to its major polyphenols, the catechins: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), and epicatechin (EC). Catechins (especially EGCG) modulate a wide range of biologically important molecules, including many membrane proteins. Yet, little is known about their mechanism(s) of action. We tested the catechins' bilayer-modifying potency using gramicidin A (gA) channels as molecular force probes. All the catechins alter gA channel function and modify bilayer properties, with a 500-fold range in potency (EGCG>ECG?EGC>EC). Additionally, the gallate group causes current block, as evident by brief downward current transitions (flickers).  相似文献   

13.
Painted bilayers containing reconstituted ion channels serve as a well defined model system for electrophysiological investigations of channel structure and function. Horizontally oriented bilayers with easy solution access to both sides were obtained by painting a phospholipid:decane mixture across a cylindrical pore etched into a 200-microm thick silicon wafer. Silanization of the SiO(2) layer produced a hydrophobic surface that promoted the adhesion of the lipid mixture. Standard lithographic techniques and anisotropic deep-reactive ion etching were used to create pores with diameters from 50 to 200 microm. The cylindrical structure of the pore in the partition and the surface treatment resulted in stable bilayers. These were used to reconstitute Maxi K channels in the 100- and 200-microm diameter pores. The electrophysiological characteristics of bilayers suspended in microchips were comparable with that of other bilayer preparations. The horizontal orientation and good voltage clamping properties make the microchip bilayer method an excellent system to study the electrical properties of reconstituted membrane proteins simultaneously with optical probes.  相似文献   

14.
Hwang TC  Koeppe RE  Andersen OS 《Biochemistry》2003,42(46):13646-13658
Genistein, a generic tyrosine kinase inhibitor, has been used extensively as a tool to investigate the possible regulation of membrane function by tyrosine phosphorylation. Genistein, in micromolar concentrations, alters the function of numerous ion channels and other membrane proteins, but only in few cases has it been demonstrated that the changes in membrane protein (ion channel) function are due to changes in a protein's phosphorylation status. The major common denominator characterizing proteins that are modulated by genistein seems to be that they are imbedded into, and span, the bilayer component of the plasma membrane. We therefore explored whether genistein could alter ion channel function by a bilayer-mediated mechanism and examined genistein's effect on gramicidin A (gA) channels in planar phospholipid bilayers. gA channels form by transmembrane dimerization of two nonconducting subunits, and genistein potentiates gA channel activity by increasing the appearance rate and prolonging the lifetime of bilayer-spanning gA dimers. That is, genistein shifts the equilibrium between nonconducting monomers and conducting dimers in favor of the bilayer-spanning dimers; the changes in channel activity therefore cannot be due to changes in bilayer fluidity. To obtain further insights into the mechanism underlying this modulation of gA channel function, we examined the effects of genistein on channels formed by gA analogues that differ in amino acid sequence. For a given channel length, the effects of genistein on gA dimerization do not depend on the specific sequence, or the chirality, of the channel-forming gA analogues. In contrast, when we change the channel length (by decreasing or increasing the number of amino acid residues in the sequence), or the bilayer thickness (by changing methylene groups in the acyl chains), the magnitude of genistein's effect increases with increasing hydrophobic mismatch between the channel length and the bilayer thickness. These results strongly suggest that genistein alters bilayer mechanical properties, which in turn modulates channel function. This bilayer-mediated mechanism is likely to apply to other pharmacological reagents and membrane proteins.  相似文献   

15.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.  相似文献   

16.
The transfer of protons in membrane proteins is an essential phenomenon in biology. However, the basic rules by which H(+) transfer occurs in water wires inside proteins are not well characterized. In particular, the effects of specific atoms and small groups of atoms on the rate of H(+) transfer in water wires are not known. In this study, new covalently linked gramicidin-A (gA) peptides were synthesized, and the effects of specific atoms and peptide constraints on the rate of H(+) transfer were measured in single molecules. The N-termini of two gA peptides were linked to various molecules: S,S-cyclopentane diacid, R,R-cyclopentane diacid, and succinic acid. Single-channel proton conductances (g(H)) were measured at various proton concentrations ([H(+)]) and compared to previous measurements obtained in the S,S- and R,R-dioxolane-linked as well as in native gA channels. Replacing the S,S-dioxolane by an S,S-cyclopentane had no effects on the g(H)-[H(+)] relationships, suggesting that the constrained and continuous transition between the two gA peptides via these S,S linkers is ultimately responsible for the two- to fourfold increase in g(H) relative to native gA channels. It is likely that constraining a continuous transition between the two gA peptides enhances the rate of H(+) transfer in water wires by decreasing the number of water wire configurations that do not transfer H(+) at higher rates as in native gA channels (a decrease in the activation entropy of the system). On the other hand, g(H) values in the R,R-cyclopentane are considerably larger than those in R,R-dioxolane-linked gA channels. One explanation would be that the electrostatic interactions between the oxygens in the dioxolane and adjacent carbonyls in the R,R-dioxolane-linked gA channel attenuate the rate of H(+) transfer in the middle of the pore. Interestingly, g(H)-[H(+)] relationships in the R,R-cyclopentane-linked gA channel are quite similar to those in native gA channels. g(H) values in succinyl-linked gA channels display a wide distribution of values that is well represented by a bigaussian. The larger peaks of these distributions are similar to g(H) values measured in native gA channel. This observation is also consistent with the notion that constraining the transition between the two beta-helical gA peptides enhances the rate of H(+) transfer in water wires by decreasing the activation entropy of the system.  相似文献   

17.
Gu H  Lum K  Kim JH  Greathouse DV  Andersen OS  Koeppe RE 《Biochemistry》2011,50(22):4855-4866
We investigated the effects of substituting two of the four tryptophans (the "inner pair" Trp(9) and Trp(11) or the "outer pair" Trp(13) and Trp(15)) in gramicidin A (gA) channels. The conformational preferences of the doubly substituted gA analogues were assessed using circular dichroism spectroscopy and size-exclusion chromatography, which show that the inner tryptophans 9 and 11 are critical for the gA's conformational preference in lipid bilayer membranes. [Phe(13,15)]gA largely retains the single-stranded helical channel structure, whereas [Phe(9,11)]gA exists primarily as double-stranded conformers. Within this context, the (2)H NMR spectra from labeled tryptophans were used to examine the changes in average indole ring orientations, induced by the Phe substitutions and by the shift in conformational preference. Using a method for deuterium labeling of already synthesized gAs, we introduced deuterium selectively onto positions C2 and C5 of the remaining tryptophan indole rings in the substituted gA analogues for solid-state (2)H NMR spectroscopy. The (least possible) changes in orientation and overall motion of each indole ring were estimated from the experimental spectra. Regardless of the mixture of backbone folds, the indole ring orientations observed in the analogues are similar to those found previously for gA channels. Both Phe-substituted analogues form single-stranded channels, as judged from the formation of heterodimeric channels with the native gA. [Phe(13,15)]gA channels have Na(+) currents that are ~50% and lifetimes that are ~80% of those of native gA channels. The double-stranded conformer(s) of [Phe(9,11)]gA do not form detectable channels. The minor single-stranded population of [Phe(9,11)]gA forms channels with Na(+) currents that are ~25% and single-channel lifetimes that are ~300% of those of native gA channels. Our results suggest that Trp(9) and Trp(11), when "reaching" for the interface, tend to drive both monomer folding (to "open" a channel) and dimer dissociation (to "close" a channel). Furthermore, the dipoles of Trp(9) and Trp(11) are relatively more important for the single-channel conductance than are the dipoles of Trp(13) and Trp(15).  相似文献   

18.
Proton conductivities in bulk solution (lambda(H)) and single-channel proton conductances (g(H)) in two different stereoisomers of the dioxolane-linked gramicidin A channel (the SS and RR dimers) were measured in a wide range of bulk proton concentrations ([H], 0.1-8000 mM). Proton mobilities (micro(H)) in water as well as in the SS and RR dimers were calculated from the conductivity data. In the concentration range of 0.1-2000 mM, a straight line with a slope of 0.75 describes the log (g(H))-log ([H]) relationship in the SS dimer. At [H] > 2000 mM, saturation is followed by a decline in g(H). The g(H)-[H] relationship in the SS dimer is qualitatively similar to the [H] dependence of lambda(H). However, the slope of the straight line in the log(lambda(H))-log([H]) plot is 0.96, indicating that the rate-limiting step for proton conduction through the SS dimer is not the diffusion of protons in bulk solution. The significant difference between the slopes of those linear relationships accounts for the faster decline of micro(H) as a function of [H] in the SS dimer in relation to bulk solution. In the high range of [H], saturation and decline of g(H) in the SS dimer can be accounted for by the significant decrease of micro(H) in bulk solution. At any given [H], g(H) in the RR dimer is significantly smaller than in the SS. Moreover, the g(H)-[H] relationship in the RR stereoisomer is qualitatively different from that in the SS. Between 1 and 50 mM [H], g(H) can be fitted with an adsorption isotherm, suggesting the presence of a proton-binding site inside the pore (pK(a) approximately 2), which limits proton exit from the channel. At 100 mM < [H] < 3000 mM, g(H) increases linearly with [H]. The distinctive shape of the g(H)-[H] relationship in the RR dimer suggests that the channel can be occupied simultaneously by more than one proton. At higher [H], the saturation and decline of g(H) in the RR dimer reflect the properties of micro(H) in bulk solution. In the entire range of [H], protons seem to cross the SS and RR channels via a Grotthuss-like mechanism. The rate-limiting step for proton transfer in the SS dimer is probably the membrane-channel/bulk solution interface. It is also proposed that the smaller g(H) in the RR dimer is the consequence of a different organization and dynamics of the H-bonded network of water molecules inside the pore of the channel, resulting in a slower proton transfer and multiple pore occupancy by protons.  相似文献   

19.
Ingolfsson HI  Koeppe RE  Andersen OS 《Biochemistry》2007,46(36):10384-10391
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is the major bioactive compound in turmeric (Curcuma longa) with antioxidant, antiinflammatory, anticarcinogenic, and antimutagenic effects. At low muM concentrations, curcumin modulates many structurally and functionally unrelated proteins, including membrane proteins. Because the cell membranes' lipid bilayer serves as a gate-keeper and regulator of many cell functions, we explored whether curcumin modifies general bilayer properties using channels formed by gramicidin A (gA). gA channels form when two monomers from opposing monolayers associate to form a conducting dimer with a hydrophobic length that is less than the bilayer hydrophobic thickness; gA channel formation thus causes a local bilayer thinning. The energetic cost of this bilayer deformation alters the gA monomer <--> dimer equilibrium, which makes the channels' appearance rate and lifetime sensitive to changes in bilayer material properties, and the gA channels become probes for changes in bilayer properties. Curcumin decreases bilayer stiffness, increasing both gA channel lifetimes and appearance rates, meaning that the energetic cost of the gA-induced bilayer deformation is reduced. These results show that curcumin may exert some of its effects on a diverse range of membrane proteins through a bilayer-mediated mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号