首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that neutrophil sequestration is required for the development of tumor necrosis factor- (TNF) induced neutrophil- (PMN) dependent pulmonary edema. TNF (3.2 X 10(5) U/kg ip) was injected into guinea pigs 18 h before lung isolation. After isolation, the lung was perfused with a phosphate-buffered Ringer solution. Dextran sulfate (mol wt 500,000) prevented the changes in pulmonary capillary pressure (Ppc; 8.5 +/- 0.8 vs. 12.8 +/- 0.8 cmH2O), lung weight gain (dW; +0.240 +/- 0.135 vs. +1.951 +/- 0.311 g), and pulmonary edema formation or wet-to-dry wt ratio [(W - D)/D; 6.6 +/- 0.2 vs. 8.3 +/- 0.5] at 60 min induced by PMN infusion into a TNF-pretreated lung. The unsulfated form of dextran had no protective effect [Ppc, dW, and (W - D)/D at 60 min: 11.9 +/- 0.9 cmH2O, +1.650 +/- 0.255 g, and 7.3 +/- 0.2, respectively], whereas the use of another anionic compound, heparin, inhibited the TNF + PMN response [Ppc, dW, and (W - D)/D at 60 min: 5.6 +/- 0.4 cmH2O, +0.168 +/- 0.0.052 g, and 6.4 +/- 0.2, respectively]. Isolated lungs showed increased PMN myeloperoxidase (MPO) activity compared with control in TNF-treated lungs at baseline and 60 min after PMN infusion. Dextran sulfate, dextran, and heparin inhibited the increase in MPO activity. The data indicate that inhibition of PMN sequestration alone is not sufficient for the inhibition of PMN-mediated TNF-induced hydrostatic pulmonary edema and that a charge-dependent mechanism mediates the protective effect of dextran sulfate.  相似文献   

2.
We investigated the effect of phorbol myristate acetate (PMA) in isolated guinea pig lungs perfused with phosphate-buffered Ringer solution. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight were recorded at 0, 10, 25, 40, and 70 min. The capillary filtration coefficient (Kf), an index of vascular permeability, was measured at 10 and 70 min. The perfusion of PMA (0.5 x 10(-7) M) increased Ppa, Ppc, and lung weight at 70 min. The ratio of arterial-to-venous vascular resistance (Ra/Rv) decreased and the Kf did not change with PMA. The perfusion of the lung with 4 alpha-phorbol didecanoate (inactive toward the protein kinase C analogue of PMA) did not affect the lung. The inhibition of TxA2 synthase with dazoxiben inhibited the response to PMA. The inhibition of the 5-lipoxygenase with U-60257 and the SRS-A receptor antagonist FPL 55712 also prevented the response to PMA. The addition of superoxide dismutase (SOD), catalase, or SOD plus catalase (the enzymes that remove O.2 H2O2, and OH., respectively) did not prevent the PMA effect or the release of TxA2; however, dimethylthiourea (DMTU), a scavenger of OH., did prevent the response to PMA. The data indicate that PMA causes a neutrophil-independent increase in lung weight due to increases in Ppc mediated by TxA2 and SRS-A. The protective effect of DMTU may be due to the inhibition of TxA2 generation.  相似文献   

3.
We investigated the effect of xanthine (X) plus xanthine oxidase (XO) on pulmonary microvascular endothelial permeability in isolated rabbit lungs perfused with Krebs buffer containing bovine serum albumin (5 g/100 ml). Addition of five mU/ml XO and 500 microM X to the perfusate caused a twofold increase in the pulmonary capillary filtration coefficient (Kf,c) 30 min later without increasing the pulmonary capillary pressure. This increase was prevented by allopurinol or catalase but not by superoxide dismutase or dimethyl sulfoxide. Because these data implicated hydrogen peroxide (H2O2) as the injurious agent, we measured its concentration in the perfusate after the addition of X and XO for a 60-min interval. In the absence of lung tissue and albumin, H2O2 increased with time, reaching a concentration of approximately 250 microM by 60 min. If albumin (5 g/100 ml) was added to the perfusate, or in the presence of lung tissue, the corresponding values were 100 microM and less than 10 microM, respectively. To understand the mechanisms of H2O2 scavenging by lung tissue, we added a 250 microM bolus of H2O2 to the lung perfusate. We found that H2O2 was removed rapidly, with a half-life of 0.31 +/- 0.04 (SE) min. This variable was not increased significantly by inhibition of lung catalase activity with sodium azide or inhibition of the lung glutathione redox cycle with 1-chloro-2,4-dinitrobenzene. However, inhibition of both enzymatic systems increased the half-life of H2O2 removal to 0.71 +/- 0.09 (SE) min (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We tested the hypothesis that dextran sulfate and heparin sulfate inhibit platelet-activating factor- (PAF) induced pulmonary edema in the isolated perfused guinea pig lung via a charge-dependent mechanism. Dextran sulfate prevented the changes in pulmonary capillary pressure (Ppc, 7.8 +/- 0.9 vs. 14.0 +/- 0.7 cmH2O), lung weight gain (dW, +0.48 +/- 0.29 vs. +8.41 +/- 2.07 g), and pulmonary edema formation or wet-to-dry weight ratio [(W-D)/D, 6.5 +/- 0.3 vs. 13.2 +/- 2.6] occurring 60 min after PAF infusion (10(-11) M) into an isolated lung. The unsulfated form of dextran had no protective effect [Ppc, dW, and (W-D)/D, 11.9 +/- 1.4 cmH2O, +5.33 +/- 2.18 g, and 11.2 +/- 3.2, respectively]. The unrelated anionic compound, heparin sulfate, also inhibited the PAF response [Ppc, dW, and (W-D)/D, 7.0 +/- 0.5 cmH2O, +0.61 +/- 0.32 g, and 6.1 +/- 0.2, respectively], whereas the partially desulfated form of heparin was not effective in inhibiting PAF-induced edema [Ppc, dW, and (W-D)/D, 15.1 +/- 0.7 cmH2O, +6.07 +/- 1.58 g, and 10.0 +/- 1.2, respectively]. When the metachromatic dye crystal violet was used as an indicator of charge interactions, the sulfated compounds interacted with PAF in vitro. The data indicate that PAF-induced pulmonary edema is inhibited by sulfated polysaccharides, possibly via a charge interaction between negatively charged compounds and PAF.  相似文献   

5.
Because reactive O2 metabolites have been demonstrated to be potent mediators of vascular dysfunction and are synthesized by lung tissue, their involvement as mediators of oleic acid (OA)-induced pulmonary edema in the isolated Krebs-perfused rabbit lung was assessed. Injection of OA (0.1 ml) into the pulmonary artery after vehicle pretreatment induced marked increases in lung weight [50.4 +/- 13.9 vs. 4.2 +/- 2.0 (SE) g 45 min after OA or vehicle, respectively, P less than 0.05], an index of pulmonary edema, and airway pressure. OA also caused a significant though minimal increase in pulmonary arterial pressure. Pretreatment with catalase (1,000 U/ml), a scavenger of H2O2, significantly (P less than 0.05, Friedman's) attenuated the increases in lung weight (50.4 +/- 13.9 vs. 15.1 +/- 4.9 g), airway pressure, and pulmonary arterial pressure. In contrast to catalase, pretreatment with Cu-tryptophan (40 microM), a lipid-soluble scavenger of superoxide, provided no protective effect by itself, nor was there any potentiation of protection when combined with catalase. Further evidence implicating O2 metabolites in OA-induced edema was obtained by electron paramagnetic resonance (EPR) spectroscopy of perfusate samples to which the spin trap, sodium 3,5-dibromo-4-nitrosobenzenesulfonate (10 mM), was added. Analysis of these samples revealed the presence of free radicals after OA. Pretreatment with catalase (1,000 U/ml) and superoxide dismutase (250 U/ml) attenuated the EPR signal, indicating that proximal formation of O2 free radicals was in part responsible for the signal. These results suggest that reactive O2 metabolites are mediators of OA-induced pulmonary edema in the isolated perfused rabbit lung.  相似文献   

6.
Alpha-thrombin-induced pulmonary vasoconstriction   总被引:4,自引:0,他引:4  
We examined the direct effects of thrombin on pulmonary vasomotor tone in isolated guinea pig lungs perfused with Ringer albumin (0.5% g/100 ml). The injection of alpha-thrombin (the native enzyme) resulted in rapid dose-dependent increases in pulmonary arterial pressure (Ppa) and pulmonary capillary pressure (Ppc), which were associated with an increase in the lung effluent thromboxane B2 concentration. The Ppa and Ppc responses decreased with time but then increased again within 40 min after thrombin injection. The increases in Ppc were primarily the result of postcapillary vasoconstriction. Pulmonary edema as evidenced by marked increases (60% from base line) in lung weight occurred within 90 min after thrombin injection. Injection of modified thrombins (i.e., gamma-thrombin lacking the fibrinogen recognition site or i-Pr2P-alpha-thrombin lacking the serine proteolytic site) was not associated with pulmonary hemodynamic or weight changes nor did they block the effects of alpha-thrombin. Indomethacin (a cyclooxygenase inhibitor), dazoxiben (a thromboxane synthase inhibitor), or hirudin (a thrombin antagonist) inhibited the thrombin-induced pulmonary vasoconstriction, as well as the pulmonary edema. We conclude that thrombin-induced pulmonary vasoconstriction is primarily the result of constriction of postcapillary vessels, and the response is mediated by generation of cyclooxygenase-derived metabolites. The edema formation is also dependent on activation of the cyclooxygenase pathway. The proteolytic site of alpha-thrombin is required for the pulmonary vasoconstrictor and edemogenic responses.  相似文献   

7.
The purpose of this study was to examine the effects of exercise on extravascular lung water as it may relate to pulmonary gas exchange. Ten male humans underwent measures of maximal oxygen uptake (Vo2 max) in two conditions: normoxia (N) and normobaric hypoxia of 15% O2 (H). Lung density was measured by quantified MRI before and 48.0 +/- 7.4 and 100.7 +/- 15.1 min following 60 min of cycling exercise in N (intensity = 61.6 +/- 9.5% Vo2 max) and 55.5 +/- 9.8 and 104.3 +/- 9.1 min following 60 min cycling exercise in H (intensity = 65.4 +/- 7.1% hypoxic Vo2 max), where Vo2 max = 65.0 +/- 7.5 ml x kg(-1) x min(-1) (N) and 54.1 +/- 7.0 ml x kg(-1) x min(-1) (H). Two subjects demonstrated mild exercise-induced arterial hypoxemia (EIAH) [minimum arterial oxygen saturation (SaO2 min) = 94.5% and 93.8%], and seven subjects demonstrated moderate EIAH (SaO2 min = 91.4 +/- 1.1%) as measured noninvasively during the Vo2 max test in N. Mean lung densities, measured once preexercise and twice postexercise, were 0.177 +/- 0.019, 0.181 +/- 0.019, and 0.173 +/- 0.019 g/ml (N) and 0.178 +/- 0.021, 0.174 +/- 0.022, and 0.176 +/- 0.019 g/ml (H), respectively. No significant differences (P > 0.05) were found in lung density following exercise in either condition or between conditions. Transient interstitial pulmonary edema did not occur following sustained steady-state cycling exercise in N or H, indicating that transient edema does not result from pulmonary capillary leakage during sustained submaximal exercise.  相似文献   

8.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Pulmonary microvascular response to LTB4: effects of perfusate composition   总被引:1,自引:0,他引:1  
We examined the effects of leukotriene B4 (LTB4) on pulmonary hemodynamics and vascular permeability using isolated perfused guinea pig lungs and cultured monolayers of pulmonary arterial endothelial cells. In lungs perfused with Ringer solution, containing 0.5 g/100 ml albumin (R-alb), LTB4 (4 micrograms) transiently increased pulmonary arterial pressure (Ppa) and capillary pressure (Pcap). Pulmonary edema developed within 70 min after LTB4 injection despite a normal Pcap. The LTB4 metabolite, 20-COOH-LTB4 (4 micrograms), did not induce hemodynamic and lung weight changes. In lungs perfused with autologous blood hematocrit = 12 +/- 1%; protein concentration = 1.5 +/- 0.2 g/100 ml), the increases in Ppa and Pcap were greater, and both pressures remained elevated. The lung weight did not increase in blood-perfused lungs. In lungs perfused with R-alb (1.5 g/100 ml albumin) to match the blood perfusate protein concentration, LTB4 induced similar hemodynamic changes as R-alb (0.5 g/100 ml) perfusate, but the additional albumin prevented the pulmonary edema. LTB4 (10(-11)-10(-6) M) with or without the addition of neutrophils to the monolayer did not increase endothelial 125I-albumin permeability. Therefore LTB4 induces pulmonary edema when the perfusate contains a low albumin concentration, but increasing the albumin concentration or adding blood cells prevents the edema. The edema is not due to increased endothelial permeability to protein and is independent of hemodynamic alterations. Protection at higher protein-concentration may be the result of LTB4 binding to albumin.  相似文献   

10.
Ventilator settings influence the development and outcome of acute lung injury. This study investigates the influence of low versus high tidal volume (V(t)) on oxidative stress-induced lung injury.Isolated rabbit lungs were subjected to one of three ventilation patterns (V(t)-positive end-expiratory pressure, PEEP): LVZP (6 ml/kg-0 cm H(2)O), HVZP (12 ml/kg-0 cm H(2)O), LV5P (6 ml/kg-5 cm H(2)O). These ventilation patterns allowed a comparison between low and high V(t) without dependence on peak inspiratory pressure (PIP). Infusion of hypochlorite (1000 nmol/min) or buffer (control) was started at t=0 min. Pulmonary artery pressure (PAP), PIP and weight were continuously recorded. Capillary filtration coefficient [K(f,c) (10(-4) ml s(-1) cm H(2)O(-1) g(-1))] was gravimetrically determined (-15/30/60/90/120 min).PIP averaged 5.8+/-0.6/13.9+/-0.6/13.9+/-0.4 cm H(2)O in the LVZP, HVZP and LV5P groups. PIP, K(f,c) or PAP did not change in control groups, indicating that none of the ventilation patterns caused lung injury by themselves. Hypochlorite-induced increase in K(f,c) but not hypochlorite-induced increase in PAP, was significantly attenuated in the LVZP-/LV5P- versus the HVZP-group (K(f,c,max.) 1.0+/-0.23/1.4+/-0.40 versus 3.2+/-1.0*). Experiments with hypochlorite were terminated due to excessive edema (>50 g) at 97+/-2.2/94.5+/-4.5 min in the LVZP-/LV5P-group versus 82+/-3.8* min in the HVZP-group (*: P<0.05).Low V(t) attenuated oxidative stress-induced increase in vascular permeability independently from PIP and PEEP.  相似文献   

11.
Perfusion of isolated sheep lungs with blood causes spontaneous edema and hypertension preceded by decreases in perfusate concentrations of leukocytes (WBC) and platelets (PLT). To determine whether these decreases were caused by pulmonary sequestration, we continuously measured blood flow and collected pulmonary arterial and left atrial blood for cell concentration measurements in six lungs early in perfusion. Significant sequestration occurred in the lung, but not in the extracorporeal circuit. To determine the contribution of these cells to spontaneous injury in this model, lungs perfused in situ with a constant flow (100 ml.kg-1.min-1) of homologous leukopenic (WBC = 540 mm-3, n = 8) or thrombocytopenic blood (PLT = 10,000 mm-3, n = 6) were compared with control lungs perfused with untreated homologous blood (WBC = 5,320, PLT = 422,000, n = 8). Perfusion of control lungs caused a rapid fall in WBC and PLT followed by transient increases in pulmonary arterial pressure, lung lymph flow, and perfusate concentrations of 6-ketoprostaglandin F1 alpha and thromboxane B2. The negative value of reservoir weight (delta W) was measured as an index of fluid entry into the lung extravascular space during perfusion. delta W increased rapidly for 60 min and then more gradually to 242 g at 180 min. This was accompanied by a rise in the lymph-to-plasma oncotic pressure ratio (pi L/pi P). Relative to control, leukopenic perfusion decreased the ratio of wet weight to dry weight, the intra- plus extravascular blood weight, and the incidence of bloody lymph. Thrombocytopenic perfusion increased lung lymph flow and the rate of delta W, decreased pi L/pi P and perfusate thromboxane B2, and delayed the peak pulmonary arterial pressure. These results suggest that perfusate leukocytes sequestered in the lung and contributed to hemorrhage but were not necessary for hypertension and edema. Platelets were an important source of thromboxane but protected against edema by an unknown mechanism.  相似文献   

12.
Mechanical stress during ventilation may cause or aggravate acute lung injury. This study investigates the influence of low vs. high tidal volume (V(t)) on factors known to play key roles in acute lung injury: nitric oxide release, eNOS and iNOS gene expression, lipid peroxidation (LPO), and surfactant phospholipids (PL). Isolated rabbit lungs were subjected to one of three ventilation patterns for 135 min (V(t)-PEEP): 6 ml/kg-0 cm H(2)O. 12 ml/kg-0 cm H(2)O 6 ml/kg-5 cm H(2)O, 12 ml/kg-0 cm H(2)O, and 6 ml/kg-5 cm H(2)O resulted in comparable peak inspiratory pressure (PIP). This allowed comparing low and high V(t) without dependence on PIP. Ventilatory patterns did not induce changes in pulmonary artery pressure, vascular permeability (K(f,c)), PIP or pulmonary compliance. High V(t) in comparison with both of the low V(t) groups caused an increase in BALF-nitrite (30.6+/-3.0* vs. 21.4+/-2.2 and 16.2+/-3.3 microM), BALF-PL (1110+/-19* vs. 750+/-68 and 634+/-82 microg/ml), and tissue LPO product accumulation (0.62+/-0.051* vs. 0.48+/-0.052 and 0.43+/-0.031 nmol/mg), *P<0.05 each. Perfusate nitrite and BALF-PL composition (assessed by use of 31P-NMR spectroscopy and MALDI-TOF mass spectrometry) did not differ among the groups. High V(t) ventilation reduced eNOS gene expression but did not affect iNOS expression. The increased release of NO and the accumulation of LPO products may represent early lung injury while elevated BALF-PL may reflect distension-induced surfactant secretion.  相似文献   

13.
Our aim was to determine whether cytokine mRNA expression is induced by experimental manipulation including artificial perfusate or ischemia-reperfusion (I/R) in an isolated, perfused rat lung model. Constant pulmonary flow [Krebs-Henseleit solution supplemented with low-endotoxin (LE) or standard (ST) bovine serum albumin 4%, 0.04 ml/g body wt] and ventilation were maintained throughout. Right and left pulmonary arteries were isolated, and the left pulmonary artery was occluded for 60 min and then reperfused for 30 min. Analysis of tumor necrosis factor-alpha, IL-1 beta, IL-6, IL-10, and IFN-gamma mRNA expression by RT-PCR and evaluation of vascular permeability by bronchoalveolar lavage (BAL) fluid albumin content were conducted separately in right and left lung. Both LE and ST groups (each 12 rats) showed increases in vascular permeability by I/R (BAL fluid albumin content: 5.53 +/- 1.55 vs. 15.63 +/- 8.87 and 4.76 +/- 2.71 vs. 16.72 +/- 4.85 mg.ml BAL fluid-1.g lung dry wt-1, mean +/- SD; right vs. left lung in LE and ST groups, P < 0.05 between right and left). Cytokine mRNA expression was significantly higher in the I/R lung than in the control lung in the LE group, whereas it was higher in the control lung in the ST group (P < 0.05). mRNAs of not only proinflammatory but also anti-inflammatory cytokines were expressed in I/R lung, which are expected to aggravate I/R injury. The reversed pattern of cytokine mRNA expression in the ST group was possibly due to the longer perfusion of control lung with perfusate containing endotoxin, which caused no lung damage without I/R.  相似文献   

14.
Lai YL  Murugan P  Hwang KC 《Life sciences》2003,72(11):1271-1278
Reactive oxygen species are the major contributing factors to lung ischemia-reperfusion (IR) injury. In this study, we tested whether a water soluble antioxidant fullerene derivative [C(60)(ONO(2))(7 +/- 2)] attenuates IR lung injury. Young Wistar rats were divided into two groups: control and C(60)(ONO(2))(7 +/- 2). Under ventilation with 95% air-5% CO(2) gas mixture and a 2.5 cm H(2)O end-expiratory pressure, the isolated lungs were perfused with a physiological solution. The experimental protocol included three periods: baseline (10 min), ischemia (45 min) and reperfusion (60 min, ventilated with 95% O(2)-5% CO(2) gas mixture). Before and after ischemia, we measured pulmonary arterial pressure (Ppa), pulmonary venous pressure and lung weight (W). Then, pulmonary capillary pressure and filtration coefficient (K(fc)) were calculated. Ischemia caused increases in Ppa, W and K(fc) in the control group. For most cases, the above ischemia-induced increases were attenuated by the C(60)(ONO(2))(7 +/- 2) pretreatment. Our results suggest that the antioxidant C(60)(ONO(2))(7 +/- 2) attenuates IR-induced lung injury.  相似文献   

15.
Noninvasive imaging techniques have been used to assess pulmonary edema following exercise but results remain equivocal. Most studies examining this phenomenon have used male subjects while the female response has received little attention. Some suggest that women, by virtue of their smaller lungs, airways, and diffusion surface areas may be more susceptible to pulmonary limitations during exercise. Accordingly, the purpose of this study was to determine if intense normobaric hypoxic exercise could induce pulmonary edema in women. Baseline lung density was obtained in eight highly trained female cyclists (mean +/- SD: age = 26 +/- 7 yr; height = 172.2 +/- 6.7 cm; mass = 64.1 +/- 6.7 kg; Vo(2max) = 52.2 +/- 2.2 ml.kg(-1).min(-1)) using computed tomography (CT). CT scans were obtained at the level of the aortic arch, the tracheal carina, and the superior end plate of the tenth thoracic vertebra. While breathing 15% O(2), subjects then performed five 2.5-km cycling intervals [mean power = 212 +/- 31 W; heart rate (HR) = 94.5 +/- 2.2%HRmax] separated by 5 min of recovery. Throughout the intervals, subjects desaturated to 82 +/- 4%, which was 13 +/- 2% below resting hypoxic levels. Scans were repeated 44 +/- 8 min following exercise. Mean lung density did not change from pre (0.138 +/- 0.014 g/ml)- to postexercise (0.137 +/- 0.011 g/ml). These findings suggest that pulmonary edema does not occur in highly trained females following intense normobaric hypoxic exercise.  相似文献   

16.
Products of cyclooxygenase activity have been proposed to mediate the pulmonary hypertension and increased microvascular permeability associated with phorbol myristate acetate- (PMA) induced acute lung injury. Previously, we reported that thromboxane (Tx) does not mediate PMA-induced pulmonary hypertension in intact anesthetized dogs. In the present study, PMA was administered to isolated canine lungs perfused with autologous blood at constant flow to investigate a possible role for Tx in the PMA-induced increase in microvascular permeability. Changes in permeability were assessed by determining changes in the capillary filtration coefficient (Kfc). In lobes pretreated with papaverine to prevent PMA-induced increases in pulmonary vascular resistance, Kfc increased from a baseline value of 0.2 +/- 0.03 to 1.5 +/- 0.29 ml.min-1.cmH2O-1.100 g wet lobe wt-1 (P < 0.01) 30 min after PMA (5.8 x 10(-8) M, n = 10). Concomitantly, TxB2, the stable metabolite of TxA2, increased from 138 +/- 44 to 1,498 +/- 505 pg/ml (P < 0.05) in the blood. Both the selective Tx synthase inhibitor, OKY-046 (7 x 10(-4) M, n = 6), and the cyclooxygenase inhibitor, indomethacin (10(-4) M, n = 7), prevented the PMA-induced increase in TxB2, but neither compound attenuated the PMA-induced increase in Kfc. ONO-3708 (10(-6) M), a selective prostaglandin (PG) H2/TxA2 receptor antagonist, prevented the vasoconstriction resulting from administration of U-46619, a stable PGH2/TxA2 receptor agonist, but it did not prevent the PMA-induced increases in Kfc (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Fluid conductance and protein permeability have been studied in isolated perfused lung models of pulmonary edema. However, previous studies have not investigated changes of both fluid conductance and protein permeability in the same isolated lung preparation after injury. Arachidonic acid (AA) metabolites are involved in the inflammatory processes that lead to the development of pulmonary edema. The hemodynamic effects of AA have been well established; however, controversy exists concerning the ability of AA to alter the permeability of the pulmonary microvasculature to fluid and protein. The purpose of this study was to simultaneously determine whether transvascular fluid conductance and protein permeability are increased in isolated perfused rabbit lungs with pulmonary edema induced by AA. Indomethacin (80 microM) was added to the perfusate to inhibit the hemodynamic effects of AA and produce a pressure-independent model of pulmonary edema. Fluid conductance was assessed by determination of the capillary filtration coefficient (Kf), and protein permeability was evaluated by measurement of 125I-albumin clearance. The injection of AA (3 mg/200 ml of perfusate) into the pulmonary arterial catheter resulted in an increase in lung weight over the remaining 30-min experimental period. Kf (microliter.s-1 x cmH2O-1 x g dry lung-1) was increased (P < 0.05) in AA-treated lungs at 10 and 30 min post-AA injection when compared with control lungs and baseline values (determined 10 min before AA injection). Albumin clearance was also greater (P < 0.05) in lungs that received AA. 125I-albumin clearance was measured at different rates of fluid flux produced by elevation of venous pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Exposing rabbits for 1 h to 100% O2 at 4 atm barometric pressure markedly increases the concentration of thromboxane B2 in alveolar lavage fluid [1,809 +/- 92 vs. 99 +/- 24 (SE) pg/ml, P less than 0.001], pulmonary arterial pressure (110 +/- 17 vs. 10 +/- 1 mmHg, P less than 0.001), lung weight gain (14.6 +/- 3.7 vs. 0.6 +/- 0.4 g/20 min, P less than 0.01), and transfer rates for aerosolized 99mTc-labeled diethylenetriamine pentaacetate (500 mol wt; 40 +/- 14 vs. 3 +/- 1 x 10(-3)/min, P less than 0.01) and fluorescein isothiocyanate-labeled dextran (7,000 mol wt; 10 +/- 3 vs. 1 +/- 1 x 10(-4)/min, P less than 0.01). Pretreatment with the antioxidant butylated hydroxyanisole (BHA) entirely prevents the pulmonary hypertension and lung injury. In addition, BHA blocks the increase in alveolar thromboxane B2 caused by hyperbaric O2 (10 and 45 pg/ml lavage fluid, n = 2). Combined therapy with polyethylene glycol- (PEG) conjugated superoxide dismutase (SOD) and PEG-catalase also completely eliminates the pulmonary hypertension, pulmonary edema, and increase in transfer rate for the aerosolized compounds. In contrast, combined treatment with unconjugated SOD and catalase does not reduce the pulmonary damage. Because of the striking increase in pulmonary arterial pressure to greater than 100 mmHg, we tested the hypothesis that thromboxane causes the hypertension and thus contributes to the lung injury. Indomethacin and UK 37,248-01 (4-[2-(1H-imidazol-1-yl)-ethoxy]benzoic acid hydrochloride, an inhibitor of thromboxane synthase, completely eliminate the pulmonary hypertension and edema.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Smoke inhalation can produce acute pulmonary edema. Previous studies have shown that the bronchial arteries are important in acute pulmonary edema occurring after inhalation of a synthetic smoke containing acrolein, a common smoke toxin. We hypothesized that inhalation of smoke from burning cotton, known to contain acrolein, would produce in sheep acute pulmonary edema that was mediated by the bronchial circulation. We reasoned that occluding the bronchial arteries would eliminate smoke-induced pulmonary edema, whereas occlusion of the pulmonary artery would not. Smoke inhalation increased lung lymph flow from baseline from 2.4 +/- 0.7 to 5.6 +/- 1.2 ml/0.5 h at 30 min (P < 0.05) to 9.1 +/- 1 ml/0.5 h at 4 h (P < 0.05). Bronchial artery ligation diminished and delayed the rise in lymph flow with baseline at 2.8 +/- 0.7 ml/0.5 h rising to 3.1 +/- 0. 8 ml/0.5 h at 30 min to 6.5 +/- 1.5 ml/0.5 h at 240 min (P < 0.05). Wet-to-dry ratio was 4.1 +/- 0.2 in control, 5.1 +/- 0.3 in smoke inhalation (P < 0.05), and 4.4 +/- 0.4 in bronchial artery ligation plus smoke-inhalation group. Smoke inhalation after occlusion of the right pulmonary artery resulted in a wet-to-dry ratio after 4 h in the right lung of 5.5 +/- 0.8 (P < 0.05 vs. control) and in the left nonoccluded lung of 5.01 +/- 0.7 (P < 0.05). Thus the bronchial arteries may be major contributors to acute pulmonary and airway edema following smoke inhalation because the edema occurs in the lung with the pulmonary artery occluded but not in the lungs with bronchial arteries ligated.  相似文献   

20.
Cardiogenic pulmonary edema results from increased hydrostatic pressures across the pulmonary circulation. We studied active Na(+) transport and alveolar fluid reabsorption in isolated perfused rat lungs exposed to increasing levels of left atrial pressure (LAP; 0--20 cmH(2)O) for 60 min. Active Na(+) transport and fluid reabsorption did not change when LAP was increased to 5 and 10 cmH(2)O compared with that in the control group (0 cmH(2)O; 0.50 +/- 0.02 ml/h). However, alveolar fluid reabsorption decreased by approximately 50% in rat lungs in which the LAP was raised to 15 cmH(2)O (0.25 +/- 0.03 ml/h). The passive movement of small solutes ((22)Na(+) and [(3)H]mannitol) and large solutes (FITC-albumin) increased progressively in rats exposed to higher LAP. There was no significant edema in lungs with a LAP of 15 cmH(2)O when all active Na(+) transport was inhibited by hypothermia or amiloride (10(-4) M) and ouabain (5 x 10(-4) M). However, when LAP was increased to 20 cmH(2)O, there was a significant influx of fluid (-0.69 +/- 0.10 ml/h), precluding the ability to assess the rate of fluid reabsorption. In additional studies, LAP was decreased from 15 to 0 cmH(2)O in the second and third hours of the experimental protocol, which resulted in normalization of lung permeability to solutes and alveolar fluid reabsorption. These data suggest that in an increased LAP model, the changes in clearance and permeability are transient, reversible, and directly related to high pulmonary circulation pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号