首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a highly sensitive in situ Western hybridization technique to study tissue-specific expression of foreign and endogenous genes in transgenic and non-transformed rice seed. The expression pattern of the soybean ferritin gene directed by a rice glutelin gene promoter, GluB-1, in transgenic rice seed revealed by this method was exactly the same as that revealed by immunological tissue printing but much clearer than the latter, and corresponded well to the results of GluB-1 promoter characterization studies. This method provides an alternative choice for studying the tissue-specific expression of a promoter, omitting the complicated transgenic procedure. The method can also be used to study the expression and accumulation pattern of endogenous genes, such as glutelin and prolamine genes, in non-transformed plants.Abbreviations DAF Days after flowering - GUS -Glucuronidase - GFP Green fluorescent protein - TBS Tris-HCl-buffered saline - TBST TBS with Tween-20Communicated by H. Ebinuma  相似文献   

2.
We have used a highly sensitive immunological tissue print technique to study cell- and tissue-specific expression of heterologous genes in transgenic plants. Primary polyclonal antibodies, raised against legumin of faba bean (Vicia faba L.) and 12S globulin of oat (Avena sativa L.) were used to localize these proteins in transgenic tobacco seeds in a streptavidin-alkaline phosphatase assay in combination with biotinylated secondary antibodies producing a higher sensitivity (by several amplification steps) of the assay. Both storage protein genes were found to be expressed in a specific pattern. While legumin is preferentially accumulated in certain parts of the embryo, the oat legumin-type globulin is restricted to the endosperm. The applied technique is highly sensitive with a resolution power down to the singlecell level and allows rapid screening of large numbers of samples.  相似文献   

3.
The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat‐inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding‐leucine rich repeat proteins and genes encoding pentatricopeptide repeat‐containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense‐associated genes in soybean during Phytophthora infection.  相似文献   

4.
5.
6.
7.
8.
We previously established a method to induce transient expression of foreign genes in intact plant tissue to detect the subcellular localization of proteins. Here, we have inserted a putative bZIP protein HY5 gene (SeqID: EU386772), isolated from the seedlings of turnips Brassica rapa L. subsp. rapa ‘Tsuda,’ and a receptor-like kinase gene AtRLK (SeqID: AY531551.1), isolated from Arabidopsis, into the plasmid pA7-GFP. We accomplished the direct incorporation of DNA into onion epidermal tissue by vacuum infiltration. By detecting GFP, which was fused with AtRLK or putative BrHY5, we determined that BrHY5 is located in the nucleus and AtRLK is located in the plasma membrane. This approach can be thus used to study the transient expression of foreign genes in intact tissue.  相似文献   

9.
Like many plants, Populus has an evolutionary history in which several, both recent and more ancient, genome duplication events have occurred and, therefore, constitutes an excellent model system for studying the functional evolution of genes. In the present study, we have focused on the properties of genes with tissue-specific differential expression patterns in poplar. We identified the genes by analyzing digital expression profiles derived by mapping 90,000+ expressed sequence tags (ESTs) from 18 sources to the predicted genes of Populus. Our sequence analysis suggests that tissue-specific differentially expressed genes have less diverged paralogs than average, indicating that gene duplication events is an important event in the pathway leading to this type of expression pattern. The functional analysis showed that genes coding for proteins involved in processes of functional importance for the specific tissue(s) in which they are expressed and genes coding for regulatory or responsive proteins are most common among the differentially expressed genes, demonstrating that the expression differentiation process is under strong selective pressure. Thus, our data supports a model where gene duplication followed by gene specialization or expansion of the regulatory and responsive networks leads to tissue-specific differential expression patterns. We have also searched for clustering of genes with similar expression pattern into gene-expression neighborhoods within the Populus genome. However, we could not detect any major clustering among the analyzed genes with highly specific expression patterns. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
Alcohol dehydrogenase (Adh) is the key enzyme in alcohol fermentation. We analyzed Adh expression in order to clarify the role of Adh of soybeans (Glycine max) to flooding stress. Proteome analysis confirmed that expression of Adh is significantly upregulated in 4-day-old soybean seedlings subjected to 2 days of flooding. Southern hybridization analysis and soybean genome database search revealed that soybean has at least 6 Adh genes. The GmAdh2 gene that responded to flooding was isolated from soybean cultivar Enrei. Adh2 expression was markedly increased 6 h after flooding and decreased 24 h after floodwater drainage. In situ hybridization and Western blot indicated that flooding strongly induces Adh2 expression in RNA and protein levels in the root apical meristem. Osmotic, cold, or drought stress did not induce expression of Adh2. These results indicate that Adh2 is a flooding-response specific soybean gene expressed in root tissue.  相似文献   

11.
We have identified three stem abundantly expressed genes in lucerne (alfalfa, Medicago sativa). A cDNA library, constructed from lucerne stem polyadenylated RNA, was screened by differential hybridization. From this screening, cDNA clones that correspond to genes which are preferentially, or specifically, expressed in the stem were isolated. MsaS1 encodes an unidentified protein, MsaS2 encodes an S-adenosyl-homocysteine hydrolase and MsaS3 encodes an extensin-like protein. Northern blot analysis of RNA isolated from individual stem internodes indicated that the three corresponding genes show differing developmental patterns of expression. The expression of MsaS1 was confined to the youngest stem tissue and may be regulated by sucrose. In stem tissue the level of RNA for the three genes decreased in response to wounding. Tissue print hybridization analysis was used to localize the expression of the genes to the xylem side of vascular bundles in lucerne stems.  相似文献   

12.
Chromatin immunoprecipitation (ChIP) is a powerful tool to identify protein:chromatin interactions that occur in the context of living cells 1-3. This technique has been widely exploited in tissue culture cells, and to a lesser extent, in primary tissue. The application of ChIP to rodent embryonic tissue, especially at early times of development, is complicated by the limited amount of tissue and the heterogeneity of cell and tissue types in the embryo. Here we present a method to perform ChIP using a dissociated embryonic day 8.5 (E8.5) embryo. Sheared chromatin from a single E8.5 embryo can be divided into up to five aliquots, which allows the investigator sufficient material for controls and for investigation of specific protein:chromatin interactions.We have utilized this technique to begin to document protein:chromatin interactions during the specification of tissue-specific gene expression programs. The heterogeneity of cell types in an embryo necessarily restricts the application of this technique because the result is the detection of protein:chromatin interactions without distinguishing whether the interactions occur in all, a subset of, or a single cell type(s). However, examination of tissue-specific genes during or following the onset of tissue-specific gene expression is feasible for two reasons. First, immunoprecipitation of tissue specific factors necessarily isolates chromatin from the cell type where the factor is expressed. Second, immunoprecipitation of coactivators and histones containing post-translational modifications that are associated with gene activation should only be found at genes and gene regulatory sequences in the cell type where the gene is being or has been activated. The technique should be applicable to the study of most tissue-specific gene activation events.In the example described below, we utilized E8.5 and E9.5 mouse embryos to examine factor binding at a skeletal muscle specific gene promoter. Somites, which are the precursor tissues from which the skeletal muscles of the trunk and limbs will form, are present at E8.5-9.54,5. Myogenin is a regulatory factor required for skeletal muscle differentiation 6-9. The data demonstrate that myogenin is associated with its own promoter in E8.5 and E9.5 embryos. Because myogenin is only expressed in somites at this stage of development 6,10, the data indicate that myogenin interactions with its own promoter have already occurred in skeletal muscle precursor cells in E8.5 embryos.  相似文献   

13.
Chalcone synthase is a key metabolic control point in the biosynthesis of a large number of flavonoids and isoflavonoid metabolites. Chs genes in bean comprise a multigene family, of which certain individual members can be differentially induced with respect to kinetics and extent of accumulation. A RT-PCR technique, based on primers designed complementary to a common conserved region and divergent 3′ sequences of the bean chs family, was developed to detect the expression of individual members of the chs family. The semi-quantitative technique is based on the amplification of short, overlapping sequences differing in size. The method was found to be sensitive, rapid, and capable of distinguishing among the individual chs members (chs 1, 4, 14, and 17). The tissue-specific expression of chs isogenes in bean seedlings, flowers and callus, as well as the effect of light on chs expression in etiolated tissue was documented.  相似文献   

14.
15.
16.
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean-specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty-three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will contribute to research on the functions of miRNAs in soybean.  相似文献   

17.
A potential mechanism to enhance utilization of sparingly soluble forms of phosphorus (P) is the root secretion of malate, which is mainly mediated by the ALMT gene family in plants. In this study, a total of 34 GmALMT genes were identified in the soybean genome. Expression patterns diverged considerably among GmALMTs in response to phosphate (Pi) starvation in leaves, roots and flowers, with expression altered by P availability in 26 of the 34 GmALMTs. One root‐specific GmALMT whose expression was significantly enhanced by Pi‐starvation, GmALMT5, was studied in more detail to determine its possible role in soybean P nutrition. Analysis of GmALMT5 tissue expression patterns, subcellular localization, and malate exudation from transgenic soybean hairy roots overexpressing GmALMT5, demonstrated that GmALMT5 is a plasma membrane protein that mediates malate efflux from roots. Furthermore, both growth and P content of transgenic Arabidopsis overexpressing GmALMT5 were significantly increased when sparingly soluble Ca‐P was used as the external P source. Taken together, these results indicate that members of the soybean GmALMT gene family exhibit diverse responses to Pi starvation. One member of this family, GmALMT5, might contribute to soybean P efficiency by enhancing utilization of sparingly soluble P sources under P limited conditions.  相似文献   

18.
Chalcone synthase (CHS) catalyses the first regulatory step in the branch pathway of phenylpropanoid biosynthesis specific for synthesis of ubiquitous flavonoid pigments and UV protectants. External stimuli such as stress, light and wounding induce CHS expression that is both tissue-specific and under developmental control. In order to identify cis-acting elements involved in organ and tissue specifity, we fused varying parts of the CHS1 promoter of white mustard (Sinapis alba L.) to the GUS-coding region and analysed the expression of these constructs in stably transformed Arabidopsis plants. Two different stages of development were examined, seedlings as an early stage and flowers as the final stage of development. In seedlings, the full-length promoter showed expression in all organs except the hypocotyl; in flowers expression could be observed in all whorls. Unit 1 of the mustard CHS1 promoter, an element conserved in several CHS genes, which has been recently identified as a light responsive element, is able to mediate a tissue-specific expression pattern similar to that obtained with the full-length promoter in seedlings as well as in flowers. Other elements enhance or repress expression in combination with Unit 1, or mediate defined spatial expression independently of Unit 1. One such element, located between-907 and -655, directs expression similar to that of the full-length promoter in flowers but not in seedlings and differs therefore in function to Unit 1. Our data suggest a dominant regulation of CHS1 expression by Unit 1. Other elements within this promoter might interact with Unit 1 or confer a subset of spatial expression patterns when Unit 1 is deleted.Abbreviations ADH alcohol dehydrogenase - CaMV cauliflower mosaic virus - CHS chalcone synthase - GUS -glucuronidase  相似文献   

19.
In the present study, the expression of fourteen genes involved in various signal transduction pathways was examined in young soybean (Glycine max) seedlings exposed to cadmium at two concentrations (10 mg L−1 and 25 mg L−1) for short time periods (3, 6 and 24 h). The results show that cadmium causes induction of genes encoding proteins involved in ethylene and polyamines metabolism, nitric oxide generation, MAPK cascades and regulation of other genes’ expression. The bioinformatic analysis of promoter sequences of Cd-inducible genes revealed that their promoters possess several regulative motifs associated with the plant response to stress factors and abscisic acid and ethylene signaling. The involvement of ethylene in the response of soybean seedlings to cadmium stress was further confirmed by the real-time analysis of ethylene production during 24 h of CdCl2 treatment. The role of the described signaling elements in transduction of the cadmium signal in young soybean seedlings is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号